
Intel® Embree
High Performance Ray Tracing Kernels

3.6.1

August 29, 2019

Contents

1 Embree Overview 2
1.1 Supported Platforms . 3
1.2 Embree Support and Contact . 3
1.3 Version History . 3
1.4 Acknowledgements . 18

2 Installation of Embree 19
2.1 Windows MSI Installer . 19
2.2 Windows ZIP File . 19
2.3 Linux RPMs . 19
2.4 Linux tar.gz Files . 21
2.5 macOS PKG Installer . 21
2.6 macOS tar.gz file . 21

3 Compiling Embree 22
3.1 Linux and macOS . 22
3.2 Windows . 24
3.3 CMake Configuration . 26

4 Using Embree 29

5 Embree API 30
5.1 Device Object . 31
5.2 Scene Object . 31
5.3 Geometry Object . 32
5.4 Ray Queries . 32
5.5 Point Queries . 33
5.6 Miscellaneous . 33

6 Upgrading from Embree 2 to Embree 3 34
6.1 Device . 35
6.2 Scene . 35
6.3 Geometry . 35
6.4 Buffers . 37
6.5 Miscellaneous . 37

1

7 Embree API Reference 40
7.1 rtcNewDevice . 40
7.2 rtcRetainDevice . 43
7.3 rtcReleaseDevice . 44
7.4 rtcGetDeviceProperty . 45
7.5 rtcGetDeviceError . 48
7.6 rtcSetDeviceErrorFunction . 49
7.7 rtcSetDeviceMemoryMonitorFunction 50
7.8 rtcNewScene . 52
7.9 rtcRetainScene . 53
7.10 rtcReleaseScene . 54
7.11 rtcAttachGeometry . 55
7.12 rtcAttachGeometryByID . 56
7.13 rtcDetachGeometry . 57
7.14 rtcGetGeometry . 58
7.15 rtcCommitScene . 59
7.16 rtcJoinCommitScene . 60
7.17 rtcSetSceneProgressMonitorFunction 62
7.18 rtcSetSceneBuildQuality . 64
7.19 rtcSetSceneFlags . 65
7.20 rtcGetSceneFlags . 66
7.21 rtcGetSceneBounds . 67
7.22 rtcGetSceneLinearBounds . 68
7.23 rtcNewGeometry . 69
7.24 RTC_GEOMETRY_TYPE_TRIANGLE 72
7.25 RTC_GEOMETRY_TYPE_QUAD 74
7.26 RTC_GEOMETRY_TYPE_GRID 77
7.27 RTC_GEOMETRY_TYPE_SUBDIVISION 79
7.28 RTC_GEOMETRY_TYPE_CURVE 82
7.29 RTC_GEOMETRY_TYPE_POINT 86
7.30 RTC_GEOMETRY_TYPE_USER 88
7.31 RTC_GEOMETRY_TYPE_INSTANCE 90
7.32 rtcRetainGeometry . 92
7.33 rtcReleaseGeometry . 93
7.34 rtcCommitGeometry . 94
7.35 rtcEnableGeometry . 95
7.36 rtcDisableGeometry . 96
7.37 rtcSetGeometryTimeStepCount 97
7.38 rtcSetGeometryTimeRange . 98
7.39 rtcSetGeometryVertexAttributeCount 99
7.40 rtcSetGeometryMask . 100
7.41 rtcSetGeometryBuildQuality . 101
7.42 rtcSetGeometryBuffer . 102
7.43 rtcSetSharedGeometryBuffer . 103
7.44 rtcSetNewGeometryBuffer . 105
7.45 rtcGetGeometryBufferData . 106

2

7.46 rtcUpdateGeometryBuffer . 107
7.47 rtcSetGeometryIntersectFilterFunction 108
7.48 rtcSetGeometryOccludedFilterFunction 111
7.49 rtcFilterIntersection . 112
7.50 rtcFilterOcclusion . 113
7.51 rtcSetGeometryUserData . 114
7.52 rtcGetGeometryUserData . 115
7.53 rtcSetGeometryUserPrimitiveCount 116
7.54 rtcSetGeometryBoundsFunction 117
7.55 rtcSetGeometryIntersectFunction 119
7.56 rtcSetGeometryOccludedFunction 121
7.57 rtcSetGeometryPointQueryFunction 123
7.58 rtcSetGeometryInstancedScene 126
7.59 rtcSetGeometryTransform . 127
7.60 rtcGetGeometryTransform . 128
7.61 rtcSetGeometryTessellationRate 129
7.62 rtcSetGeometryTopologyCount 130
7.63 rtcSetGeometrySubdivisionMode 131
7.64 rtcSetGeometryVertexAttributeTopology 133
7.65 rtcSetGeometryDisplacementFunction 134
7.66 rtcGetGeometryFirstHalfEdge . 136
7.67 rtcGetGeometryFace . 138
7.68 rtcGetGeometryNextHalfEdge . 140
7.69 rtcGetGeometryPreviousHalfEdge 142
7.70 rtcGetGeometryOppositeHalfEdge 144
7.71 rtcInterpolate . 146
7.72 rtcInterpolateN . 148
7.73 rtcNewBuffer . 150
7.74 rtcNewSharedBuffer . 151
7.75 rtcRetainBuffer . 152
7.76 rtcReleaseBuffer . 153
7.77 rtcGetBufferData . 154
7.78 RTCRay . 155
7.79 RTCHit . 157
7.80 RTCRayHit . 158
7.81 RTCRayN . 159
7.82 RTCHitN . 160
7.83 RTCRayHitN . 161
7.84 rtcInitIntersectContext . 162
7.85 rtcIntersect1 . 164
7.86 rtcOccluded1 . 166
7.87 rtcIntersect4/8/16 . 168
7.88 rtcOccluded4/8/16 . 170
7.89 rtcIntersect1M . 172
7.90 rtcOccluded1M . 174
7.91 rtcIntersect1Mp . 176

3

7.92 rtcOccluded1Mp . 177
7.93 rtcIntersectNM . 178
7.94 rtcOccludedNM . 180
7.95 rtcIntersectNp . 182
7.96 rtcOccludedNp . 184
7.97 rtcInitPointQueryContext . 186
7.98 rtcNewBVH . 190
7.99 rtcRetainBVH . 191
7.100rtcReleaseBVH . 192
7.101rtcBuildBVH . 193

8 Performance Recommendations 197
8.1 MXCSR control and status register 197
8.2 Thread Creation and Affinity Settings 197
8.3 Fast Coherent Rays . 198
8.4 Huge Page Support . 198

8.4.1 Huge Pages under Linux 198
8.4.2 Huge Pages under Windows 199
8.4.3 Huge Pages under macOS 199

8.5 Avoid store-to-load forwarding issues with single rays 199

9 Embree Tutorials 201
9.1 Minimal . 202
9.2 Triangle Geometry . 202
9.3 Dynamic Scene . 202
9.4 User Geometry . 206
9.5 Viewer . 206
9.6 Stream Viewer . 207
9.7 Intersection Filter . 208
9.8 Instanced Geometry . 208
9.9 Multi Level Instancing . 210
9.10 Path Tracer . 210
9.11 Hair . 212
9.12 Curve Geometry . 214
9.13 Subdivision Geometry . 214
9.14 Displacement Geometry . 215
9.15 Grid Geometry . 215
9.16 Point Geometry . 215
9.17 Motion Blur Geometry . 215
9.18 Interpolation . 219
9.19 Closest Point . 219
9.20 Voronoi . 221
9.21 BVH Builder . 221
9.22 BVH Access . 222
9.23 Find Embree . 222

4

Chapter 1

Embree Overview

Intel® Embree is a collection of high-performance ray tracing kernels, developed
at Intel. The target users of Intel® Embree are graphics application engineers
who want to improve the performance of their photo-realistic rendering appli-
cation by leveraging Embree’s performance-optimized ray tracing kernels. The
kernels are optimized for the latest Intel® processors with support for SSE,
AVX, AVX2, and AVX-512 instructions. Intel® Embree supports runtime code
selection to choose the traversal and build algorithms that best matches the
instruction set of your CPU. We recommend using Intel® Embree through its
API to get the highest benefit from future improvements. Intel® Embree is
released as Open Source under the Apache 2.0 license.

Intel® Embree supports applications written with the Intel® SPMD Pro-
gram Compiler (ISPC, https://ispc.github.io/) by also providing an ISPC
interface to the core ray tracing algorithms. This makes it possible to write a
renderer in ISPC that automatically vectorizes and leverages SSE, AVX, AVX2,
and AVX-512 instructions. ISPC also supports runtime code selection, thus
ISPC will select the best code path for your application.

Intel® Embree contains algorithms optimized for incoherent workloads
(e.g. Monte Carlo ray tracing algorithms) and coherent workloads (e.g. primary
visibility and hard shadow rays).

The single-ray traversal kernels of Intel® Embree provide high performance
for incoherent workloads and are very easy to integrate into existing rendering
applications. Using the stream kernels, even higher performance for incoherent
rays is possible, but integration might require significant code changes to the
application to use the stream paradigm. In general for coherent workloads, the
stream mode with coherent flag set gives the best performance.

Intel® Embree also supports dynamic scenes by implementing high-performance
two-level spatial index structure construction algorithms.

In addition to the ray tracing kernels, Intel® Embree provides some Embree
Tutorials to demonstrate how to use the Embree API.

5

http://www.apache.org/licenses/LICENSE-2.0
https://ispc.github.io/

1.1 Supported Platforms
Embree supports Windows (32-bit and 64-bit), Linux (64-bit), and macOS (64-
bit). The code compiles with the Intel® Compiler, GCC, Clang, and the Mi-
crosoft Compiler.

Using the Intel® Compiler improves performance by approximately 10%.
Performance also varies across different operating systems, with Linux typically
performing best as it supports transparently transitioning to 2MB pages.

Embree is optimized for Intel CPUs supporting SSE, AVX, AVX2, and AVX-
512 instructions, and requires at least a CPU with support for SSE2.

1.2 Embree Support and Contact
If you encounter bugs please report them via Embree’s GitHub Issue Tracker.

For questions and feature requests please write us at embree_support@
intel.com.

To receive notifications of updates and new features of Embree please sub-
scribe to the Embree mailing list.

1.3 Version History
1.3.1 New Features in Embree 3.6.1

• Restored binary compatibility between Embree 3.6 and 3.5 when single-
level instancing is used.

• Fixed bug in subgrid intersector
• Removed point query alignment in ISPC header

1.3.2 New Features in Embree 3.6
• Added Catmull-Rom curve types.
• Added support for multi-level instancing.
• Added support for point queries.
• Fixed a bug preventing normal oriented curves being used unless timesteps

were specified.
• Fixed bug in external BVH builder when configured for dynamic build.
• Added support for new config flag “user_threads=N” to device initializa-

tion which sets the number of threads used by TBB but created by the
user.

• Fixed automatic vertex buffer padding when using rtcSetNewGeometry
API function.

6

https://github.com/embree/embree/issues
mailto:embree_support@intel.com
mailto:embree_support@intel.com
https://groups.google.com/d/forum/embree/

1.3.3 New Features in Embree 3.5.2
• Added EMBREE_API_NAMESPACE cmake option that allows to put

all Embree API functions inside a user defined namespace.
• Added EMBREE_LIBRARY_NAME cmake option that allows to re-

name the Embree library.
• When Embree is compiled as static library, EMBREE_STATIC_LIB has

no longer to get defined before including the Embree API headers.
• Added CPU frequency_level device configuration to allow an application

to specify the frequency level it wants to run on. This forces Embree to not
use optimizations that may reduce the CPU frequency below that level.
By default Embree is configured to the the AVX-heavy frequency level,
thus if the application uses solely non-AVX code, configuring the Embree
device with “frequency_level=simd128” may give better performance.

• Fixed a bug in the spatial split builder which caused it to fail for scenes
with more than 2^24 geometries.

1.3.4 New Features in Embree 3.5.1
• Fixed ray/sphere intersector to work also for non-normalized rays.
• Fixed self intersection avoidance for ray oriented discs when non-normalized

rays were used.
• Increased maximal face valence for subdiv patch to 64 and reduced stack

size requirement for subdiv patch evaluation.

1.3.5 New Features in Embree 3.5.0
• Changed normal oriented curve definition to fix waving artefacts.
• Fixed bounding issue for normal oriented motion blurred curves.
• Fixed performance issue with motion blurred point geometry.
• Fixed generation of documentation with new pandoc versions.

1.3.6 New Features in Embree 3.4.0
• Added point primitives (spheres, ray-oriented discs, normal-oriented discs).
• Fixed crash triggered by scenes with only invalid primitives.
• Improved robustness of quad/grid-based intersectors.
• Upgraded to TBB 2019.2 for release builds.

1.3.7 New Features in Embree 3.3.0
• Added support for motion blur time range per geometry. This way geome-

tries can appear and disappear during the camera shutter and time steps
do not have to start and end at camera shutter interval boundaries.

• Fixed crash with pathtracer when using –triangle-sphere command line.
• Fixed crash with pathtracer when using –shader ao command line.
• Fixed tutorials showing a black window on macOS 10.14 until moved.

7

1.3.8 New Features in Embree 3.2.4
• Fixed compile issues with ICC 2019.
• Released ZIP files for Windows are now provided in a version linked against

Visual Studio 2013 and Visual Studio 2015.

1.3.9 New Features in Embree 3.2.3
• Fixed crash when using curves with RTC_SCENE_FLAG_DYNAMIC

combined with RTC_BUILD_QUALITY_MEDIUM.

1.3.10 New Features in Embree 3.2.2
• Fixed intersection distance for unnormalized rays with line segments.
• Removed libmmd.dll dependency in release builds for Windows.
• Fixed detection of AppleClang compiler under MacOSX.

1.3.11 New Features in Embree 3.2.1
• Bugfix in flat mode for hermite curves.
• Added EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR

cmake option to control self intersection avoidance for flat curves.
• Performance fix when instantiating motion blurred scenes. The applica-

tion should best use two (or more) time steps for an instance that instan-
tiates a motion blurred scene.

• Fixed AVX512 compile issue with GCC 6.1.1.
• Fixed performance issue with rtcGetGeometryUserData when used during

rendering.
• Bugfix in length of derivatives for grid geometry.
• Added BVH8 support for motion blurred curves and lines. For some work-

loads this increases performance by up to 7%.
• Fixed rtcGetGeometryTransform to return the local to world transform.
• Fixed bug in multi segment motion blur that caused missing of perfectly

axis aligned geometry.
• Reduced memory consumption of small scenes by 4x.
• Reduced temporal storage of grid builder.

1.3.12 New Features in Embree 3.2.0
• Improved watertightness of robust mode.
• Line segments, and other curves are now all contained in a single BVH

which improves performance when these are both used in a scene.
• Performance improvement of up to 20% for line segments.
• Bugfix to Embree2 to Embree3 conversion script.
• Added support for Hermite curve basis.
• Semantics of normal buffer for normal oriented curves has changed to

simplify usage. Please see documentation for details.

8

• Using GLFW and imgui in tutorials.
• Fixed floating point exception in static variable initialization.
• Fixed invalid memory access in rtcGetGeometryTransform for non-motion

blur instances.
• Improved self intersection avoidance for flat curves. Transparency rays

with tnear set to previous hit distance do not need curve radius based self
intersection avoidance as same hit is calculated again. For this reason self
intersection avoidance is now only applied to ray origin.

1.3.13 New Features in Embree 3.1.0
• Added new normal-oriented curve primitive for ray tracing of grass-like

structures.
• Added new grid primitive for ray tracing tessellated and displaced surfaces

in very memory efficient manner.
• Fixed bug of ribbon curve intersector when derivative was zero.
• Installing all static libraries when EMBREE_STATIC_LIB is enabled.
• Added API functions to access topology of subdivision mesh.
• Reduced memory consumption of instances.
• Improved performance of instances by 8%.
• Reduced memory consumption of curves by up to 2x.
• Up to 5% higher performance on AVX-512 architectures.
• Added native support for multiple curve basis functions. Internal basis

conversions are no longer performed, which saves additional memory when
multiple bases are used.

• Fixed issue with non thread safe local static variable initialization in
VS2013.

• Bugfix in rtcSetNewGeometry. Vertex buffers did not get properly overal-
located.

• Replaced ImageMagick with OpenImageIO in the tutorials.

1.3.14 New Features in Embree 3.0.0
• Switched to a new version of the API which provides improved flexibility

but is not backward compatible. Please see “Upgrading from Embree 2
to Embree 3” section of the documentation for upgrade instructions. In
particular, we provide a Python script that performs most of the transition
work.

• User geometries inside an instanced scene and a top-level scene no longer
need to handle the instID field of the ray differently. They both just need
to copy the context.instID into the ray.instID field.

• Support for context filter functions that can be assigned to a ray query.
• User geometries can now invoke filter functions using the rtcFilterInter-

section and rtcFilterOcclusion calls.
• Higher flexibility through specifying build quality per scene and geometry.
• Geometry normal uses commonly used right-hand rule from now on.

9

• Added self-intersection avoidance to ribbon curves and lines. Applications
do not have to implement self-intersection workarounds for these primitive
types anymore.

• Added support for 4 billion primitives in a single scene.
• Removed the RTC_MAX_USER_VERTEX_BUFFERS and RTC_MAX_INDEX_BUFFERS

limitations.
• Reduced memory consumption by 192 bytes per instance.
• Fixed some performance issues on AVX-512 architectures.
• Individual Contributor License Agreement (ICLA) and Corporate Con-

tributor License Agreement (CCLA) no longer required to contribute to
the project.

1.3.15 New Features in Embree 2.17.5
• Improved watertightness of robust mode.
• Fixed floating point exception in static variable initialization.
• Fixed AVX512 compile issue with GCC 6.1.1.

1.3.16 New Features in Embree 2.17.4
• Fixed AVX512 compile issue with GCC 7.
• Fixed issue with not thread safe local static variable initialization in

VS2013.
• Fixed bug in the 4 and 8-wide packet intersection of instances with multi-

segment motion blur on AVX-512 architectures.
• Fixed bug in rtcOccluded4/8/16 when only AVX-512 ISA was enabled.

1.3.17 New Features in Embree 2.17.3
• Fixed GCC compile warning in debug mode.
• Fixed bug of ribbon curve intersector when derivative was zero.
• Installing all static libraries when EMBREE_STATIC_LIB is enabled.

1.3.18 New Features in Embree 2.17.2
• Made BVH build of curve geometry deterministic.

1.3.19 New Features in Embree 2.17.1
• Improved performance of occlusion ray packets by up to 50%.
• Fixed detection of Clang for CMake 3 under MacOSX
• Fixed AVX code compilation issue with GCC 7 compiler caused by explicit

use of vzeroupper intrinsics.
• Fixed an issue where Clang address sanitizer reported an error in the

internal tasking system.
• Added fix to compile on 32 bit Linux distribution.

10

• Fixed some wrong relative include paths in Embree.
• Improved performance of robust single ray mode by 5%.
• Added EMBREE_INSTALL_DEPENDENCIES option (default OFF) to

enable installing of Embree dependencies.
• Fixed performance regression for occlusion ray streams.
• Reduced temporary memory requirements of BVH builder for curves and

line segments.
• Fixed performance regression for user geometries and packet ray tracing.
• Fixed bug where wrong closest hit was reported for very curvy hair seg-

ment.

1.3.20 New Features in Embree 2.17.0
• Improved packet ray tracing performance for coherent rays by 10-60%

(requires RTC_INTERSECT_COHERENT flag).
• Improved ray tracing performance for incoherent rays on AVX-512 archi-

tectures by 5%.
• Improved ray tracing performance for streams of incoherent rays by 5-15%.
• Fixed tbb_debug.lib linking error under Windows.
• Fast coherent ray stream and packet code paths now also work in robust

mode.
• Using less agressive prefetching for large BVH nodes which results in 1-2%

higher ray tracing performance.
• Precompiled binaries have stack-protector enabled, except for traversal

kernels. BVH builders can be slightly slower due to this change. If you
want stack-protectors disabled please turn off EMBREE_STACK_PROTECTOR
in cmake and build the binaries yourself.

• When enabling ISAs individually, the 8-wide BVH was previously only
available when the AVX ISA was also selected. This issue is now fixed,
and one can enable only AVX2 and still get best performance by using an
8-wide BVH.

• Fixed rtcOccluded1 and rtcOccluded1Ex API functions which were broken
in ISPC.

• Providing MSI installer for Windows.

1.3.21 New Features in Embree 2.16.5
• Bugfix in the robust triangle intersector that rarely caused NaNs.
• Fixed bug in hybrid traversal kernel when BVH leaf was entered with no

active rays. This rarely caused crashes when used with instancing.
• Fixed bug introduced in Embree 2.16.2 which caused instancing not to

work properly when a smaller than the native SIMD width was used in
ray packet mode.

• Fixed bug in the curve geometry intersector that caused rendering arte-
facts for Bézier curves with p0=p1 and/or p2=p3.

11

• Fixed bug in the curve geometry intersector that caused hit results with
NaNs to be reported.

• Fixed masking bug that caused rare cracks in curve geometry.
• Enabled support for SSE2 in precompiled binaries again.

1.3.22 New Features in Embree 2.16.4
• Bugfix in the ribbon intersector for hair primitives. Non-normalized rays

caused wrong intersection distance to be reported.

1.3.23 New Features in Embree 2.16.3
• Increased accuracy for handling subdivision surfaces. This fixes cracks

when using displacement mapping but reduces performance at irregular
vertices.

• Fixed a bug where subdivision geometry was not properly updated when
modifying only the tesselation rate and vertex array.

1.3.24 New Features in Embree 2.16.2
• Fixed bug that caused NULL intersection context in intersection filter

when instancing was used.
• Fixed an issue where uv’s where outside the triangle (or quad) for very

small triangles (or quads). In robust mode we improved the uv calculation
to avoid that issue, in fast mode we accept that inconsistency for better
performance.

• Changed UV encoding for non-quad subdivision patches to allow a sub-
patch UV range of [-0.5,1.5[. Using this new encoding one can use
finite differences to calculate derivatives if required. Please adjust your
code in case you rely on the old encoding.

1.3.25 New Features in Embree 2.16.1
• Workaround for compile issues with Visual Studio 2017
• Fixed bug in subdiv code for static scenes when using tessellation levels

larger than 50.
• Fixed low performance when adding many geometries to a scene.
• Fixed high memory consumption issue when using instances in dynamic

scene (by disabling two level builder for user geometries and instances).

1.3.26 New Features in Embree 2.16.0
• Improved multi-segment motion blur support for scenes with different

number of time steps per mesh.
• New top level BVH builder that improves build times and BVH quality of

two-level BVHs.

12

• Added support to enable only a single ISA. Previously code was always
compiled for SSE2.

• Improved single ray tracing performance for incoherent rays on AVX-512
architectures by 5-10%.

• Improved packet/hybrid ray tracing performance for incoherent rays on
AVX-512 architectures by 10-30%.

• Improved stream ray tracing performance for coherent rays in structure-
of-pointers layout by 40-70%.

• BVH builder for compact scenes of triangles and quads needs essentially
no temporary memory anymore. This doubles the maximal scene size that
can be rendered in compact mode.

• Triangles no longer store the geometry normal in fast/default mode which
reduces memory consumption by up to 20%.

• Compact mode uses BVH4 now consistently which reduces memory con-
sumption by up to 10%.

• Reduced memory consumption for small scenes (of 10k-100k primitives)
and dynamic scenes.

• Improved performance of user geometries and instances through BVH8
support.

• The API supports now specifying the geometry ID of a geometry at con-
struction time. This way matching the geometry ID used by Embree and
the application is simplified.

• Fixed a bug that would have caused a failure of the BVH builder for
dynamic scenes when run on a machine with more then 1000 threads.

• Fixed a bug that could have been triggered when reaching the maximal
number of mappings under Linux (vm.max_map_count). This could have
happened when creating a large number of small static scenes.

• Added huge page support for Windows and MacOSX (experimental).
• Added support for Visual Studio 2017.
• Removed support for Visual Studio 2012.
• Precompiled binaries now require a CPU supporting at least the SSE4.2

ISA.
• We no longer provide precompiled binaries for 32-bit on Windows.
• Under Windows one now has to use the platform toolset option in CMake

to switch to Clang or the Intel® Compiler.
• Fixed a bug for subdivision meshes when using the incoherent scene flag.
• Fixed a bug in the line geometry intersection, that caused reporting an

invalid line segment intersection with primID -1.
• Buffer stride for vertex buffers of different time steps of triangle and quad

meshes have to be identical now.
• Fixed a bug in the curve geometry intersection code when passed a perfect

cylinder.

13

1.3.27 New Features in Embree 2.15.0
• Added rtcCommitJoin mode that allows thread to join a build operation.

When using the internal tasking system this allows Embree to solely use
the threads that called rtcCommitJoin to build the scene, while previously
also normal worker threads participated in the build. You should no longer
use rtcCommit to join a build.

• Added rtcDeviceSetErrorFunction2 API call, which sets an error call-
back function which additionally gets passed a user provided pointer
(rtcDeviceSetErrorFunction is now deprecated).

• Added rtcDeviceSetMemoryMonitorFunction2 API call, which sets a
memory monitor callback function which additionally get passed a user
provided pointer. (rtcDeviceSetMemoryMonitorFunction is now depre-
cated).

• Build performance for hair geometry improved by up to 2×.
• Standard BVH build performance increased by 5%.
• Added API extension to use internal Morton-code based builder, the stan-

dard binned-SAH builder, and the spatial split-based SAH builder.
• Added support for BSpline hair and curves. Embree uses either the Bézier

or BSpline basis internally, and converts other curves, which requires more
memory during rendering. For reduced memory consumption set the EM-
BREE_NATIVE_SPLINE_BASIS to the basis your application uses (which is
set to BEZIER by default).

• Setting the number of threads through tbb::taskscheduler_init object
on the application side is now working properly.

• Windows and Linux releases are build using AVX-512 support.
• Implemented hybrid traversal for hair and line segments for improved ray

packet performance.
• AVX-512 code compiles with Clang 4.0.0
• Fixed crash when ray packets were disabled in CMake.

1.3.28 New Features in Embree 2.14.0
• Added ignore_config_files option to init flags that allows the applica-

tion to ignore Embree configuration files.
• Face-varying interpolation is now supported for subdivision surfaces.
• Up to 16 user vertex buffers are supported for vertex attribute interpola-

tion.
• Deprecated rtcSetBoundaryMode function, please use the new rtcSet-

SubdivisionMode function.
• Added RTC_SUBDIV_PIN_BOUNDARY mode for handling boundaries of sub-

division meshes.
• Added RTC_SUBDIV_PIN_ALL mode to enforce linear interpolation for sub-

division meshes.
• Optimized object generation performance for dynamic scenes.
• Reduced memory consumption when using lots of small dynamic objects.

14

• Fixed bug for subdivision surfaces using low tessellation rates.
• Hair geometry now uses a new ribbon intersector that intersects with ray-

facing quads. The new intersector also returns the v-coordinate of the
hair intersection, and fixes artefacts at junction points between segments,
at the cost of a small performance hit.

• Added rtcSetBuffer2 function, that additionally gets the number of el-
ements of a buffer. In dynamic scenes, this function allows to quickly
change buffer sizes, making it possible to change the number of primitives
of a mesh or the number of crease features for subdivision surfaces.

• Added simple ‘viewer_anim’ tutorial for rendering key frame animations
and ‘buildbench’ for measuring BVH (re-)build performance for static and
dynamic scenes.

• Added more AVX-512 optimizations for future architectures.

1.3.29 New Features in Embree 2.13.0
• Improved performance for compact (but not robust) scenes.
• Added robust mode for motion blurred triangles and quads.
• Added fast dynamic mode for user geometries.
• Up to 20% faster BVH build performance on the second generation Intel®

Xeon Phi™ processor codenamed Knights Landing.
• Improved quality of the spatial split builder.
• Improved performance for coherent streams of ray packets (SOA layout),

e.g. for fast primary visibility.
• Various bug fixes in tessellation cache, quad-based spatial split builder,

etc.

1.3.30 New Features in Embree 2.12.0
• Added support for multi-segment motion blur for all primitive types.
• API support for stream of pointers to single rays (rtcIntersect1Mp and

rtcOccluded1Mp)
• Improved BVH refitting performance for dynamic scenes.
• Improved high-quality mode for quads (added spatial split builder for

quads)
• Faster dynamic scenes for triangle and quad-based meshes on AVX2 en-

abled machines.
• Performance and correctness bugfix in optimization for streams of coherent

(single) rays.
• Fixed large memory consumption (issue introduced in Embree v2.11.0). If

you use Embree v2.11.0 please upgrade to Embree v2.12.0.
• Reduced memory consumption for dynamic scenes containing small meshes.
• Added support to start and affinitize TBB worker threads by passing

“start_threads=1,set_affinity=1” to rtcNewDevice. These settings
are recommended on systems with a high thread count.

• rtcInterpolate2 can now be called within a displacement shader.

15

• Added initial support for Microsoft’s Parallel Pattern Library (PPL) as
tasking system alternative (for optimal performance TBB is highly recom-
mended).

• Updated to TBB 2017 which is released under the Apache v2.0 license.
• Dropped support for Visual Studio 2012 Win32 compiler. Visual Studio

2012 x64 is still supported.

1.3.31 New Features in Embree 2.11.0
• Improved performance for streams of coherent (single) rays flagged with

RTC_INTERSECT_COHERENT. For such coherent ray streams, e.g. primary
rays, the performance typically improves by 1.3-2×.

• New spatial split BVH builder for triangles, which is 2-6× faster than the
previous version and more memory conservative.

• Improved performance and scalability of all standard BVH builders on
systems with large core counts.

• Fixed rtcGetBounds for motion blur scenes.
• Thread affinity is now on by default when running on the latest Intel®

Xeon Phi™ processor.
• Added AVX-512 support for future Intel® Xeon processors.

1.3.32 New Features in Embree 2.10.0
• Added a new curve geometry which renders the sweep surface of a circle

along a Bézier curve.
• Intersection filters can update the tfar ray distance.
• Geometry types can get disabled at compile time.
• Modified and extended the ray stream API.
• Added new callback mechanism for the ray stream API.
• Improved ray stream performance (up to 5-10%).
• Up to 20% faster morton builder on machines with large core counts.
• Lots of optimizations for the second generation Intel® Xeon Phi™ proces-

sor codenamed Knights Landing.
• Added experimental support for compressed BVH nodes (reduces node

size to 56-62% of uncompressed size). Compression introduces a typical
performance overhead of ~10%.

• Bugfix in backface culling mode. We do now properly cull the backfaces
and not the frontfaces.

• Feature freeze for the first generation Intel® Xeon Phi™ coprocessor code-
named Knights Corner. We will still maintain and add bug fixes to Embree
v2.9.0, but Embree 2.10 and future versions will no longer support it.

1.3.33 New Features in Embree 2.9.0
• Improved shadow ray performance (10-100% depending on the scene).

16

• Added initial support for ray streams (10-30% higher performance depend-
ing on ray coherence in the stream).

• Added support to calculate second order derivatives using the rtcInter-
polate2 function.

• Changed the parametrization for triangular subdivision faces to the same
scheme used for pentagons.

• Added support to query the Embree configuration using the rtcDe-
viceGetParameter function.

1.3.34 New Features in Embree 2.8.1
• Added support for setting per geometry tessellation rate (supported for

subdivision and Bézier geometries).
• Added support for motion blurred instances.

1.3.35 New Features in Embree 2.8.0
• Added support for line segment geometry.
• Added support for quad geometry (replaces triangle-pairs feature).
• Added support for linear motion blur of user geometries.
• Improved performance through AVX-512 optimizations.
• Improved performance of lazy scene build (when using TBB 4.4 update

2).
• Improved performance through huge page support under linux.

1.3.36 New Features in Embree 2.7.1
• Internal tasking system supports cancellation of build operations.
• ISPC mode for robust and compact scenes got significantly faster (imple-

mented hybrid traversal for bvh4.triangle4v and bvh4.triangle4i).
• Hair rendering got faster as we fixed some issues with the SAH heuristic

cost factors.
• BVH8 got slight faster for single ray traversal (improved sorting when

hitting more than 4 boxes).
• BVH build performance got up to 30% faster on CPUs with high core

counts (improved parallel partition code).
• High quality build mode again working properly (spatial splits had been

deactivated in v2.7.0 due to some bug).
• Support for merging two adjacent triangles sharing a common edge into a

triangle-pair primitive (can reduce memory consumption and BVH build
times by up to 50% for mostly quad-based input meshes).

• Internal cleanups (reduced number of traversal kernels by more templat-
ing).

• Reduced stack size requirements of BVH builders.
• Fixed crash for dynamic scenes, triggered by deleting all geometries from

the scene.

17

1.3.37 New Features in Embree 2.7.0
• Added device concept to Embree to allow different components of an ap-

plication to use Embree without interfering with each other.
• Fixed memory leak in twolevel builder used for dynamic scenes.
• Fixed bug in tesselation cache that caused crashes for subdivision surfaces.
• Fixed bug in internal task scheduler that caused deadlocks when using

rtcCommitThread.
• Improved hit-distance accuracy for thin triangles in robust mode.
• Added support to disable ray packet support in cmake.

1.3.38 New Features in Embree 2.6.2
• Fixed bug triggered by instantiating motion blur geometry.
• Fixed bug in hit UV coordinates of static subdivision geometries.
• Performance improvements when only changing tessellation levels for sub-

division geometry per frame.
• Added ray packet intersectors for subdivision geometry, resulting in im-

proved performance for coherent rays.
• Reduced virtual address space usage for static geometries.
• Fixed some AVX2 code paths when compiling with GCC or Clang.
• Bugfix for subdiv patches with non-matching winding order.
• Bugfix in ISA detection of AVX-512.

1.3.39 New Features in Embree 2.6.1
• Major performance improvements for ray tracing subdivision surfaces,

e.g. up to 2× faster for scenes where only the tessellation levels are chang-
ing per frame, and up to 3× faster for scenes with lots of crease features

• Initial support for architectures supporting the new 16-wide AVX-512 ISA
• Implemented intersection filter callback support for subdivision surfaces
• Added RTC_IGNORE_INVALID_RAYS CMake option which makes the ray

intersectors more robust against full tree traversal caused by invalid ray
inputs (e.g. INF, NaN, etc)

1.3.40 New Features in Embree 2.6.0
• Added rtcInterpolate function to interpolate per vertex attributes
• Added rtcSetBoundaryMode function that can be used to select the bound-

ary handling for subdivision surfaces
• Fixed a traversal bug that caused rays with very small ray direction com-

ponents to miss geometry
• Performance improvements for the robust traversal mode
• Fixed deadlock when calling rtcCommit from multiple threads on same

scene

18

1.3.41 New Features in Embree 2.5.1
• On dual socket workstations, the initial BVH build performance almost

doubled through a better memory allocation scheme
• Reduced memory usage for subdivision surface objects with crease features
• rtcCommit performance is robust against unset “flush to zero” and “de-

normals are zero” flags. However, enabling these flags in your application
is still recommended

• Reduced memory usage for subdivision surfaces with borders and infinitely
sharp creases

• Lots of internal cleanups and bug fixes for both Intel® Xeon® and Intel®
Xeon Phi™

1.3.42 New Features in Embree 2.5.0
• Improved hierarchy build performance on both Intel Xeon and Intel Xeon

Phi
• Vastly improved tessellation cache for ray tracing subdivision surfaces
• Added rtcGetUserData API call to query per geometry user pointer set

through rtcSetUserData
• Added support for memory monitor callback functions to track and limit

memory consumption
• Added support for progress monitor callback functions to track build

progress and cancel long build operations
• BVH builders can be used to build user defined hierarchies inside the

application (see tutorial BVH Builder)
• Switched to TBB as default tasking system on Xeon to get even faster

hierarchy build times and better integration for applications that also use
TBB

• rtcCommit can get called from multiple TBB threads to join the hierarchy
build operations

1.3.43 New Features in Embree 2.4
• Support for Catmull Clark subdivision surfaces (triangle/quad base prim-

itives)
• Support for vector displacements on Catmull Clark subdivision surfaces
• Various bug fixes (e.g. 4-byte alignment of vertex buffers works)

1.3.44 New Features in Embree 2.3.3
• BVH builders more robustly handle invalid input data (Intel Xeon proces-

sor family)
• Motion blur support for hair geometry (Xeon)
• Improved motion blur performance for triangle geometry (Xeon)
• Improved robust ray tracing mode (Xeon)

19

• Added rtcCommitThread API call for easier integration into existing task-
ing systems (Xeon and Intel Xeon Phi coprocessor)

• Added support for recording and replaying all rtcIntersect/rtcOccluded
calls (Xeon and Xeon Phi)

1.3.45 New Features in Embree 2.3.2
• Improved mixed AABB/OBB-BVH for hair geometry (Xeon Phi)
• Reduced amount of pre-allocated memory for BVH builders (Xeon Phi)
• New 64-bit Morton code-based BVH builder (Xeon Phi)
• (Enhanced) Morton code-based BVH builders use now tree rotations to

improve BVH quality (Xeon Phi)
• Bug fixes (Xeon and Xeon Phi)

1.3.46 New Features in Embree 2.3.1
• High quality BVH mode improves spatial splits which result in up to 30%

performance improvement for some scenes (Xeon)
• Compile time enabled intersection filter functions do not reduce perfor-

mance if no intersection filter is used in the scene (Xeon and Xeon Phi)
• Improved ray tracing performance for hair geometry by >20% on Xeon

Phi. BVH for hair geometry requires 20% less memory
• BVH8 for AVX/AVX2 targets improves performance for single ray tracing

on Haswell by up to 12% and by up to 5% for hybrid (Xeon)
• Memory conservative BVH for Xeon Phi now uses BVH node quantization

to lower memory footprint (requires half the memory footprint of the
default BVH)

1.3.47 New Features in Embree 2.3
• Support for ray tracing hair geometry (Xeon and Xeon Phi)
• Catching errors through error callback function
• Faster hybrid traversal (Xeon and Xeon Phi)
• New memory conservative BVH for Xeon Phi
• Faster Morton code-based builder on Xeon
• Faster binned-SAH builder on Xeon Phi
• Lots of code cleanups/simplifications/improvements (Xeon and Xeon Phi)

1.3.48 New Features in Embree 2.2
• Support for motion blur on Xeon Phi
• Support for intersection filter callback functions
• Support for buffer sharing with the application
• Lots of AVX2 optimizations, e.g. ~20% faster 8-wide hybrid traversal
• Experimental support for 8-wide (AVX/AVX2) and 16-wide BVHs (Xeon

Phi)

20

1.3.49 New Features in Embree 2.1
• New future proof API with a strong focus on supporting dynamic scenes
• Lots of optimizations for 8-wide AVX2 (Haswell architecture)
• Automatic runtime code selection for SSE, AVX, and AVX2
• Support for user-defined geometry
• New and improved BVH builders:

– Fast adaptive Morton code-based builder (without SAH-based top-
level rebuild)

– Both the SAH and Morton code-based builders got faster (Xeon Phi)
– New variant of the SAH-based builder using triangle pre-splits (Xeon

Phi)

1.3.50 New Features in Embree 2.0
• Support for the Intel® Xeon Phi™ coprocessor platform
• Support for high-performance “packet” kernels on SSE, AVX, and Xeon

Phi
• Integration with the Intel® SPMD Program Compiler (ISPC)
• Instantiation and fast BVH reconstruction
• Example photo-realistic rendering engine for both C++ and ISPC

1.4 Acknowledgements
This software is based in part on the work of the Independent JPEG Group.

21

Chapter 2

Installation of Embree

2.1 Windows MSI Installer
You can install the Embree library using the Windows MSI installer embree-
3.6.1-x64.vc12.msi. This will install the 64-bit Embree version by default in
Program Files\Intel\Embree v3.6.1 x64.

You have to set the path to the bin folders manually to your PATH environ-
ment variable for applications to find Embree.

To compile applications with Embree using CMake, please have a look at the
find_embree tutorial. To compile this tutorial, you need to set the embree_DIR
CMake variable of this tutorial to Program Files\Intel\Embree v3.6.1 x64.

To uninstall Embree, open Programs and Features by clicking the Start
button, clicking Control Panel, clicking Programs, and then clicking Programs
and Features. Select Embree 3.6.1 x64 and uninstall it.

2.2 Windows ZIP File
Embree linked against Visual Studio 2013 embree-3.6.1.x64.vc12.windows.zip
and Visual Studio 2015 embree-3.6.1.x64.vc14.windows.zip are provided as a
ZIP file. After unpacking this ZIP file, you should set the path to the lib folder
manually to your PATH environment variable for applications to find Embree.
To compile applications with Embree, you also have to set the Include Direc-
tories path in Visual Studio to the include folder of the Embree installation.

If you plan to ship Embree with your application, best use the Embree
version from this ZIP file.

2.3 Linux RPMs
Uncompress the tar.gz file embree-3.6.1.x86_64.rpm.tar.gz to obtain the indi-
vidual RPM files:

22

https://github.com/embree/embree/releases/download/v3.6.1/embree-3.6.1.x64.vc12.msi
https://github.com/embree/embree/releases/download/v3.6.1/embree-3.6.1.x64.vc12.msi
https://github.com/embree/embree/releases/download/v3.6.1/embree-3.6.1.x64.vc12.windows.zip
https://github.com/embree/embree/releases/download/v3.6.1/embree-3.6.1.x64.vc14.windows.zip
https://github.com/embree/embree/releases/download/v3.6.1/embree-3.6.1.x86_64.rpm.tar.gz

tar xzf embree-3.6.1.x86_64.rpm.tar.gz

To install Embree using the RPM packages on your Linux system, type the
following:

sudo rpm --install embree3-lib-3.6.1-1.x86_64.rpm
sudo rpm --install embree3-devel-3.6.1-1.noarch.rpm
sudo rpm --install embree3-examples-3.6.1-1.x86_64.rpm

You also have to install the Intel® Threading Building Blocks (TBB) using
yum:

sudo yum install tbb.x86_64 tbb-devel.x86_64

On Debian-based Linux distributions you first need to convert the RPM filed
into DEB files using the alien tool:

sudo apt-get install alien dpkg-dev debhelper build-essential

sudo alien embree3-lib-3.6.1-1.x86_64.rpm
sudo alien embree3-devel-3.6.1-1.noarch.rpm
sudo alien embree3-examples-3.6.1-1.x86_64.rpm

sudo dpkg -i embree3-lib_3.6.1-2_amd64.deb
sudo dpkg -i embree3-devel_3.6.1-2_all.deb
sudo dpkg -i embree3-examples_3.6.1-2_amd64.deb

Also install the Intel® Threading Building Blocks (TBB) using apt-get:

sudo apt-get install libtbb-dev

Alternatively you can download the latest TBB version from https://www.
threadingbuildingblocks.org/download and set the LD_LIBRARY_PATH envi-
ronment variable to point to the TBB library.

Note that the Embree RPMs are linked against the TBB version coming
with CentOS. This older TBB version is missing some features required to get
optimal build performance, and does not support building of scenes lazily during
rendering. To get a full featured Embree, please install using the tar.gz files,
which always ship with the latest TBB version.

Under Linux, Embree is installed by default in the /usr/lib64 and /usr/
include directories. This way applications will find Embree automatically. The
Embree tutorials are installed into the /usr/bin/embree3 folder. Specify the
full path to the tutorials to start them.

To uninstall Embree, just execute the following:

sudo rpm --erase embree3-lib-3.6.1-1.x86_64
sudo rpm --erase embree3-devel-3.6.1-1.noarch
sudo rpm --erase embree3-examples-3.6.1-1.x86_64

23

https://www.threadingbuildingblocks.org/download
https://www.threadingbuildingblocks.org/download

2.4 Linux tar.gz Files
The Linux version of Embree is also delivered as a tar.gz file: embree-
3.6.1.x86_64.linux.tar.gz. Unpack this file using tar and source the provided
embree-vars.sh (if you are using the bash shell) or embree-vars.csh (if you
are using the C shell) to set up the environment properly:

tar xzf embree-3.6.1.x86_64.linux.tar.gz
source embree-3.6.1.x86_64.linux/embree-vars.sh

If you want to ship Embree with your application, best use the Embree
version provided in the tar.gz file.

We recommend adding a relative RPATH to your application that points to
the location where Embree (and TBB) can be found, e.g. $ORIGIN/../lib.

2.5 macOS PKG Installer
To install the Embree library on your macOS system use the provided package
installer inside embree-3.6.1.x86_64.pkg. This will install Embree by default
into /opt/local/lib and /opt/local/include directories. The Embree tuto-
rials are installed into the /Applications/Embree3 directory.

You also have to install the Intel® Threading Building Blocks (TBB) using
MacPorts:

sudo port install tbb

Alternatively you can download the latest TBB version from https://www.
threadingbuildingblocks.org/download and set the DYLD_LIBRARY_PATH en-
vironment variable to point to the TBB library.

To uninstall Embree, execute the uninstaller script /Applications/Em-
bree3/uninstall.command.

2.6 macOS tar.gz file
The macOS version of Embree is also delivered as a tar.gz file: embree-
3.6.1.x86_64.macosx.tar.gz. Unpack this file using tar and source the provided
embree-vars.sh (if you are using the bash shell) or embree-vars.csh (if you
are using the C shell) to set up the environment properly:

tar xzf embree-3.6.1.x64.macosx.tar.gz
source embree-3.6.1.x64.macosx/embree-vars.sh

If you want to ship Embree with your application, please use the Embree
library of the provided tar.gz file. The library name of that Embree library is
of the form @rpath/libembree.3.dylib (and similar also for the included TBB
library). This ensures that you can add a relative RPATH to your application that
points to the location where Embree (and TBB) can be found, e.g. @loader_
path/../lib.

24

https://github.com/embree/embree/releases/download/v3.6.1/embree-3.6.1.x86_64.linux.tar.gz
https://github.com/embree/embree/releases/download/v3.6.1/embree-3.6.1.x86_64.linux.tar.gz
https://github.com/embree/embree/releases/download/v3.6.1/embree-3.6.1.x86_64.pkg
http://www.macports.org/
https://www.threadingbuildingblocks.org/download
https://www.threadingbuildingblocks.org/download
https://github.com/embree/embree/releases/download/v3.6.1/embree-3.6.1.x86_64.macosx.tar.gz
https://github.com/embree/embree/releases/download/v3.6.1/embree-3.6.1.x86_64.macosx.tar.gz

Chapter 3

Compiling Embree

We recommend to use CMake to build Embree. Do not enable fast-math opti-
mizations; these might break Embree.

3.1 Linux and macOS
To compile Embree you need a modern C++ compiler that supports C++11.
Embree is tested with Intel® Compiler 17.0 (Update 1), Intel® Compiler 16.0
(Update 1), Clang 3.8.0 (supports AVX2), Clang 4.0.0 (supports AVX512) and
GCC 5.4.0. If the GCC that comes with your Fedora/Red Hat/CentOS distribu-
tion is too old then you can run the provided script scripts/install_linux_
gcc.sh to locally install a recent GCC into $HOME/devtools-2.

Embree supports using the Intel® Threading Building Blocks (TBB) as the
tasking system. For performance and flexibility reasons we recommend to use
Embree with the Intel® Threading Building Blocks (TBB) and best also use
TBB inside your application. Optionally you can disable TBB in Embree
through the EMBREE_TASKING_SYSTEM CMake variable.

Embree supports the Intel® SPMD Program Compiler (ISPC), which allows
straightforward parallelization of an entire renderer. If you do not want to
use ISPC then you can disable EMBREE_ISPC_SUPPORT in CMake. Otherwise,
download and install the ISPC binaries (we have tested ISPC version 1.9.1) from
ispc.github.io. After installation, put the path to ispc permanently into your
PATH environment variable or you need to correctly set the ISPC_EXECUTABLE
variable during CMake configuration.

You additionally have to install CMake 2.8.11 or higher and the developer
version of GLUT.

Under macOS, all these dependencies can be installed using MacPorts:

sudo port install cmake tbb-devel glfw-devel

Depending on your Linux distribution you can install these dependencies
using yum or apt-get. Some of these packages might already be installed or

25

https://ispc.github.io/downloads.html
http://www.macports.org/

might have slightly different names.
Type the following to install the dependencies using yum:

sudo yum install cmake
sudo yum install tbb-devel
sudo yum install glfw-devel

Type the following to install the dependencies using apt-get:
sudo apt-get install cmake-curses-gui
sudo apt-get install libtbb-dev
sudo apt-get install libglfw3-dev

Finally you can compile Embree using CMake. Create a build directory
inside the Embree root directory and execute ccmake .. inside this build direc-
tory.
mkdir build
cd build
ccmake ..

Per default CMake will use the compilers specified with the CC and CXX
environment variables. Should you want to use a different compiler, run cmake
first and set the CMAKE_CXX_COMPILER and CMAKE_C_COMPILER variables to the
desired compiler. For example, to use the Intel® Compiler instead of the default
GCC on most Linux machines (g++ and gcc), execute
cmake -DCMAKE_CXX_COMPILER=icpc -DCMAKE_C_COMPILER=icc ..

Similarly, to use Clang set the variables to clang++ and clang, respectively.
Note that the compiler variables cannot be changed anymore after the first run
of cmake or ccmake.

Running ccmake will open a dialog where you can perform various config-
urations as described below in CMake Configuration. After having configured
Embree, press c (for configure) and g (for generate) to generate a Makefile and
leave the configuration. The code can be compiled by executing make.
make

The executables will be generated inside the build folder. We recommend
to finally install the Embree library and header files on your system. Therefore
set the CMAKE_INSTALL_PREFIX to /usr in cmake and type:
sudo make install

If you keep the default CMAKE_INSTALL_PREFIX of /usr/local then you have
to make sure the path /usr/local/lib is in your LD_LIBRARY_PATH.

You can also uninstall Embree again by executing:
sudo make uninstall

If you cannot install Embree on your system (e.g. when you don’t have
administrator rights) you need to add embree_root_directory/build to your
LD_LIBRARY_PATH.

26

3.2 Windows
Embree is tested under Windows using the Visual Studio 2017, Visual Studio
2015 (Update 1) compiler (Win32 and x64), Visual Studio 2013 (Update 5)
compiler (Win32 and x64), Intel® Compiler 17.0 (Update 1) (Win32 and x64),
Intel® Compiler 16.0 (Update 1) (Win32 and x64), and Clang 3.9 (Win32 and
x64). Using the Visual Studio 2015 compiler, Visual Studio 2013 compiler,
Intel® Compiler, and Clang you can compile Embree for AVX2. To compile
Embree for AVX-512 you have to use the Intel® Compiler.

Embree supports using the Intel® Threading Building Blocks (TBB) as the
tasking system. For performance and flexibility reasons we recommend to use
Embree with the Intel® Threading Building Blocks (TBB) and best also use
TBB inside your application. Optionally you can disable TBB in Embree
through the EMBREE_TASKING_SYSTEM CMake variable.

Embree will either find the Intel® Threading Building Blocks (TBB) instal-
lation that comes with the Intel® Compiler, or you can install the binary dis-
tribution of TBB directly from www.threadingbuildingblocks.org into a folder
named tbb into your Embree root directory. You also have to make sure that
the libraries tbb.dll and tbb_malloc.dll can be found when executing your
Embree applications, e.g. by putting the path to these libraries into your PATH
environment variable.

Embree supports the Intel® SPMD Program Compiler (ISPC), which allows
straightforward parallelization of an entire renderer. When installing ISPC,
make sure to download an ISPC version from ispc.github.io that is compatible
with your Visual Studio version. There are two ISPC versions, one for Visual
Studio 2013 and earlier, and one for Visual Studio 2015 and later. When using
the wrong ISPC version you will get link errors. After installation, put the path
to ispc.exe permanently into your PATH environment variable or you need to
correctly set the ISPC_EXECUTABLE variable during CMake configuration. We
have tested ISPC version 1.9.1. If you do not want to use ISPC then you can
disable EMBREE_ISPC_SUPPORT in CMake.

You additionally have to install CMake (version 2.8.11 or higher). Note that
you need a native Windows CMake installation, because CMake under Cygwin
cannot generate solution files for Visual Studio.

3.2.1 Using the IDE
Run cmake-gui, browse to the Embree sources, set the build directory and click
Configure. Now you can select the Generator, e.g. “Visual Studio 12 2013” for
a 32-bit build or “Visual Studio 12 2013 Win64” for a 64-bit build.

To use a different compiler than the Microsoft Visual C++ compiler, you
additionally need to specify the proper compiler toolset through the option
“Optional toolset to use (-T parameter)”. E.g. to use Clang for compilation set
the toolset to “LLVM-vs2013”, to use the Intel® Compiler 2017 for compilation
set the toolset to “Intel C++ Compiler 17.0”.

27

https://www.threadingbuildingblocks.org/download
https://ispc.github.io/downloads.html
http://www.cmake.org/download/

Do not change the toolset manually in a solution file (neither through the
project properties dialog, nor through the “Use Intel Compiler” project context
menu), because then some compiler specific command line options cannot be
set by CMake.

Most configuration parameters described in the CMake Configuration can
be set under Windows as well. Finally, click “Generate” to create the Visual
Studio solution files.

The following CMake options are only available under Windows:

• CMAKE_CONFIGURATION_TYPE: List of generated configurations. Default
value is Debug;Release;RelWithDebInfo.

• USE_STATIC_RUNTIME: Use the static version of the C/C++ runtime li-
brary. This option is turned OFF by default.

Use the generated Visual Studio solution file embree2.sln to compile the
project. To build Embree with support for the AVX2 instruction set you need
at least Visual Studio 2013 (Update 4).

We recommend enabling syntax highlighting for the .ispc source and .
isph header files. To do so open Visual Studio, go to Tools ⇒ Options ⇒
Text Editor ⇒ File Extension and add the isph and ispc extensions for the
“Microsoft Visual C++” editor.

3.2.2 Using the Command Line
Embree can also be configured and built without the IDE using the Visual
Studio command prompt:

cd path\to\embree
mkdir build
cd build
cmake -G "Visual Studio 12 2013 Win64" ..
cmake --build . --config Release

To use the Intel® Compiler, set the proper toolset, e.g. for Intel Compiler
17.0:

cmake -G "Visual Studio 12 2013 Win64" -T "Intel C++ Compiler 17.0" ..
cmake --build . --config Release

You can also build only some projects with the --target switch. Additional
parameters after “--” will be passed to msbuild. For example, to build the
Embree library in parallel use

cmake --build . --config Release --target embree -- /m

28

3.3 CMake Configuration
The default CMake configuration in the configuration dialog should be appro-
priate for most usages. The following list describes all parameters that can be
configured in CMake:

• CMAKE_BUILD_TYPE: Can be used to switch between Debug mode (Debug),
Release mode (Release) (default), and Release mode with enabled asser-
tions and debug symbols (RelWithDebInfo).

• EMBREE_STACK_PROTECTOR: Enables protection of return address from
buffer overwrites. This option is OFF by default.

• EMBREE_ISPC_SUPPORT: Enables ISPC support of Embree. This option is
ON by default.

• EMBREE_STATIC_LIB: Builds Embree as a static library (OFF by default).
Further multiple static libraries are generated for the different ISAs se-
lected (e.g. embree3.a, embree3_sse42.a, embree3_avx.a, embree3_
avx2.a, embree3_avx512knl.a, embree3_avx512skx.a). You have to
link these libraries in exactly this order of increasing ISA.

• EMBREE_API_NAMESPACE: Specifies a namespace name to put all Embree
API symbols inside. By default no namespace is used and plain C symbols
exported.

• EMBREE_LIBRARY_NAME: Specifies the name of the Embree library file cre-
ated. By default the name embree3 is used.

• EMBREE_IGNORE_CMAKE_CXX_FLAGS: When enabled, Embree ignores de-
fault CMAKE_CXX_FLAGS. This option is turned ON by default.

• EMBREE_TUTORIALS: Enables build of Embree tutorials (default ON).

• EMBREE_BACKFACE_CULLING: Enables backface culling, i.e. only surfaces
facing a ray can be hit. This option is turned OFF by default.

• EMBREE_FILTER_FUNCTION: Enables the intersection filter function feature
(ON by default).

• EMBREE_RAY_MASK: Enables the ray masking feature (OFF by default).

• EMBREE_RAY_PACKETS: Enables ray packet traversal kernels. This feature is
turned ON by default. When turned on packet traversal is used internally
and packets passed to rtcIntersect4/8/16 are kept intact in callbacks (when
the ISA of appropiate width is enabled).

• EMBREE_IGNORE_INVALID_RAYS: Makes code robust against the risk of full-
tree traversals caused by invalid rays (e.g. rays containing INF/NaN as
origins). This option is turned OFF by default.

29

• EMBREE_TASKING_SYSTEM: Chooses between Intel® Threading TBB Build-
ing Blocks (TBB), Parallel Patterns Library (PPL) (Windows only), or
an internal tasking system (INTERNAL). By default TBB is used.

• EMBREE_MAX_ISA: Select highest supported ISA (SSE2, SSE4.2, AVX,
AVX2, AVX512KNL, AVX512SKX, or NONE). When set to NONE the
EMBREE_ISA_* variables can be used to enable ISAs individually. By
default the option is set to AVX2.

• EMBREE_ISA_SSE2: Enables SSE2 when EMBREE_MAX_ISA is set to
NONE. By default this option is turned OFF.

• EMBREE_ISA_SSE42: Enables SSE4.2 when EMBREE_MAX_ISA is set
to NONE. By default this option is turned OFF.

• EMBREE_ISA_AVX: Enables AVX when EMBREE_MAX_ISA is set to
NONE. By default this option is turned OFF.

• EMBREE_ISA_AVX2: Enables AVX2 when EMBREE_MAX_ISA is set to
NONE. By default this option is turned OFF.

• EMBREE_ISA_AVX512KNL: Enables AVX-512 for Xeon Phi when EMBREE_MAX_ISA
is set to NONE. By default this option is turned OFF.

• EMBREE_ISA_AVX512SKX: Enables AVX-512 for Skylake when EMBREE_MAX_ISA
is set to NONE. By default this option is turned OFF.

• EMBREE_GEOMETRY_TRIANGLE: Enables support for trianglegeometries (ON
by default).

• EMBREE_GEOMETRY_QUAD: Enables support for quad geometries (ON by de-
fault).

• EMBREE_GEOMETRY_CURVE: Enables support for curve geometries (ON by
default).

• EMBREE_GEOMETRY_SUBDIVISION: Enables support for subdivision geome-
tries (ON by default).

• EMBREE_GEOMETRY_INSTANCE: Enables support for instances (ON by de-
fault).

• EMBREE_GEOMETRY_USER: Enables support for user defined geometries (ON
by default).

• EMBREE_GEOMETRY_POINT: Enables support for point geometries (ON by
default).

30

• EMBREE_CURVE_SELF_INTERSECTION_AVOIDANCE_FACTOR: Specifies a fac-
tor that controls the self intersection avoidance feature for flat curves. Flat
curve intersections which are closer than curve_radius*EMBREE_CURVE_
SELF_INTERSECTION_AVOIDANCE_FACTOR to the ray origin are ignored. A
value of 0.0f disables self intersection avoidance while 2.0f is the default
value.

• EMBREE_MAX_INSTANCE_LEVEL_COUNT: Specifies the maximum number of
nested instance levels. Should be greater than 0; the default value is
1. Instances nested any deeper than this value will silently disappear in
release mode, and cause assertions in debug mode.

31

Chapter 4

Using Embree

The most convenient way of using Embree is through CMake. Just let CMake
find Embree using the FIND_PACKAGE function inside your CMakeLists.txt file:

FIND_PACKAGE(embree 3.0 REQUIRED)

If you installed Embree using the Linux RPM or macOS PKG installer, this
will automatically find Embree. If you used the zip or tar.gz files to extract
Embree, you need to set the embree_DIR variable to the folder you extracted Em-
bree to. If you used the Windows MSI installer, you need to set embree_DIR to
point to the Embree install location (e.g. C:\Program Files\Intel\Embree3).

The FIND_PACKAGE CMake function will set the EMBREE_INCLUDE_DIRS vari-
able to point to the directory containing the Embree headers. You should add
this folder to the include directories of your build:

INCLUDE_DIRECTORIES(${EMBREE_INCLUDE_DIRS})

Further, the EMBREE_LIBRARY variable will point to the Embree library to
link against. Link against Embree the following way:

TARGET_LINK_LIBRARIES(application ${EMBREE_LIBRARY})

Now please have a look at the Embree Tutorials source code and the Embree
API section to get started.

32

Chapter 5

Embree API

The Embree API is a low-level C99 ray tracing API which can be used to
construct 3D scenes and perform ray queries of different types inside these scenes.
All API calls carry the prefix rtc (or RTC for types) which stands for ray tracing
core.

The API also exists in an ISPC version, which is almost identical but contains
additional functions that operate on ray packets with a size of the native SIMD
width used by ISPC. For simplicity this document refers to the C99 version
of the API functions. For changes when upgrading from the Embree 2 to the
current Embree 3 API see Section Upgrading from Embree 2 to Embree 3.

The API supports scenes consisting of different geometry types such as trian-
gle meshes, quad meshes (triangle pairs), grid meshes, flat curves, round curves,
oriented curves, subdivision meshes, instances, and user-defined geometries. See
Section Scene Object for more information.

Finding the closest hit of a ray segment with the scene (rtcIntersect-
type functions), and determining whether any hit between a ray segment and
the scene exists (rtcOccluded-type functions) are both supported. The API
supports queries for single rays, ray packets, and ray streams. See Section Ray
Queries for more information.

The API is designed in an object-oriented manner, e.g. it contains device ob-
jects (RTCDevice type), scene objects (RTCScene type), geometry objects (RTC-
Geometry type), buffer objects (RTCBuffer type), and BVH objects (RTCBVH
type). All objects are reference counted, and handles can be released by calling
the appropriate release function (e.g. rtcReleaseDevice) or retained by incre-
menting the reference count (e.g. rtcRetainDevice). In general, API calls that
access the same object are not thread-safe, unless specified differently. However,
attaching geometries to the same scene and performing ray queries in a scene is
thread-safe.

33

5.1 Device Object
Embree supports a device concept, which allows different components of the
application to use the Embree API without interfering with each other. An ap-
plication typically first creates a device using the rtcNewDevice function. This
device can then be used to construct further objects, such as scenes and ge-
ometries. Before the application exits, it should release all devices by invoking
rtcReleaseDevice. An application typically creates only a single device. If re-
quired differently, it should only use a small number of devices at any given
time.

Each user thread has its own error flag per device. If an error occurs when
invoking an API function, this flag is set to an error code (if it isn’t already set
by a previous error). See Section rtcGetDeviceError for information on how to
read the error code and Section rtcSetDeviceErrorFunction on how to register
a callback that is invoked for each error encountered. It is recommended to
always set a error callback function, to detect all errors.

5.2 Scene Object
A scene is a container for a set of geometries, and contains a spatial acceleration
structure which can be used to perform different types of ray queries.

A scene is created using the rtcNewScene function call, and released using
the rtcReleaseScene function call. To populate a scene with geometries use
the rtcAttachGeometry call, and to detach them use the rtcDetachGeome-
try call. Once all scene geometries are attached, an rtcCommitScene call (or
rtcJoinCommitScene call) will finish the scene description and trigger building
of internal data structures. After the scene got committed, it is safe to perform
ray queries (see Section Ray Queries) or to query the scene bounding box (see
rtcGetSceneBounds and rtcGetSceneLinearBounds).

If scene geometries get modified or attached or detached, the rtcCom-
mitScene call must be invoked before performing any further ray queries for
the scene; otherwise the effect of the ray query is undefined. The modification
of a geometry, committing the scene, and tracing of rays must always happen
sequentially, and never at the same time. Any API call that sets a property
of the scene or geometries contained in the scene count as scene modification,
e.g. including setting of intersection filter functions.

Scene flags can be used to configure a scene to use less memory (RTC_SCENE_
FLAG_COMPACT), use more robust traversal algorithms (RTC_SCENE_FLAG_RO-
BUST), and to optimize for dynamic content. See Section rtcSetSceneFlags for
more details.

A build quality can be specified for a scene to balance between accelera-
tion structure build performance and ray query performance. See Section rtc-
SetSceneBuildQuality for more details on build quality.

34

5.3 Geometry Object
A new geometry is created using the rtcNewGeometry function. Depending on
the geometry type, different buffers must be bound (e.g. using rtcSetShared-
GeometryBuffer) to set up the geometry data. In most cases, binding of a
vertex and index buffer is required. The number of primitives and vertices of
that geometry is typically inferred from the size of these bound buffers.

Changes to the geometry always must be committed using the rtcCommit-
Geometry call before using the geometry. After committing, a geometry is not
included in any scene. A geometry can be added to a scene by using the rtcAt-
tachGeometry function (to automatically assign a geometry ID) or using the
rtcAttachGeometryById function (to specify the geometry ID manually). A
geometry can only be attached to a single scene at a time.

All geometry types support multi-segment motion blur with an arbitrary
number of equidistant time steps (in the range of 2 to 129) inside a user speci-
fied time range. Each geometry can have a different number of time steps and
a different time range. The motion blur geometry is defined by linearly inter-
polating the geometries of neighboring time steps. To construct a motion blur
geometry, first the number of time steps of the geometry must be specified using
the rtcSetGeometryTimeStepCount function, and then a vertex buffer for each
time step must be bound, e.g. using the rtcSetSharedGeometryBuffer func-
tion. Optionally, a time range defining the start (and end time) of the first (and
last) time step can be set using the rtcSetGeometryTimeRange function. This
feature will also allow geometries to appear and disappear during the camera
shutter time if the time range is a sub range of [0,1].

The API supports per-geometry filter callback functions (see rtcSetGeom-
etryIntersectFilterFunction and rtcSetGeometryOccludedFilterFunc-
tion) that are invoked for each intersection found during the rtcIntersect-
type or rtcOccluded-type calls. The former ones are called geometry intersec-
tion filter functions, the latter ones geometry occlusion filter functions. These
filter functions are designed to be used to ignore intersections outside of a user-
defined silhouette of a primitive, e.g. to model tree leaves using transparency
textures.

5.4 Ray Queries
The API supports finding the closest hit of a ray segment with the scene (rtcIn-
tersect-type functions), and determining whether any hit between a ray seg-
ment and the scene exists (rtcOccluded-type functions).

Supported are single ray queries (rtcIntersect1 and rtcOccluded1) as
well as ray packet queries for ray packets of size 4 (rtcIntersect4 and rtcOc-
cluded4), ray packets of size 8 (rtcIntersect8 and rtcOccluded8), and ray
packets of size 16 (rtcIntersect16 and rtcOccluded16).

Ray streams in a variety of layouts are supported as well, such as streams of
single rays (rtcIntersect1M and rtcOccluded1M), streams of pointers to single

35

rays (rtcIntersect1p and rtcOccluded1p), streams of ray packets (rtcIn-
tersectNM and rtcOccludedNM), and large packet-like streams in structure of
pointer layout (rtcIntersectNp and rtcOccludedNp).

See Sections rtcIntersect1 and rtcOccluded1 for a detailed description of how
to set up and trace a ray.

See tutorial Triangle Geometry for a complete example of how to trace single
rays and ray packets. Also have a look at the tutorial Stream Viewer for an
example of how to trace ray streams.

5.5 Point Queries
The API supports traversal of the BVH using a point query object that specifies
a location and a query radius. For all primitives intersecting the according
domain, a user defined callback function is called which allows queries such as
finding the closest point on the surface geometries of the scene (see Tutorial
[ClosestPoint]) or nearest neighbour queries (see Tutorial [Voronoi]).

See Section [rtcPointQuery] for a detailed description of how to set up point
queries.

5.6 Miscellaneous
A context filter function, which can be set per ray query is supported (see
rtcInitIntersectContext). This filter function is designed to change the se-
mantics of the ray query, e.g. to accumulate opacity for transparent shadows,
count the number of surfaces along a ray, collect all hits along a ray, etc.

The internal algorithms to build a BVH are exposed through the RTCBVH
object and rtcBuildBVH call. This call makes it possible to build a BVH in a
user-specified format over user-specified primitives. See the documentation of
the rtcBuildBVH call for more details.

For getting the most performance out of Embree, see the Section Perfor-
mance Recommendations.

36

Chapter 6

Upgrading from Embree 2
to Embree 3

We decided to introduce an improved API in Embree 3 that is not backward
compatible with the Embree 2 API. This step was required to remove various
deprecated API functions that accumulated over time, improve extensibility of
the API, fix suboptimal design decisions, fix design mistakes (such as incom-
patible single ray and ray packet layouts), clean up inconsistent naming, and
increase flexibility.

To make porting to the new API easy, we provide a conversion script that
can do most of the work, and will annotate the code with remaining changes
required. The script can be invoked the following way for CPP files:
./scripts/cpp-patch.py --patch embree2_to_embree3.patch
--in infile.cpp --out outfile.cpp

When invoked for ISPC files, add the --ispc option:
./scripts/cpp-patch.py --ispc --patch embree2_to_embree3.patch
--in infile.ispc --out outfile.ispc

Apply the script to each source file of your project that contains Embree API
calls or types. The input file and output file can also be identical to perform
the patch in-place. Please always backup your original code before running the
script, and inspect the code changes done by the script using diff (e.g. git
diff), to make sure no undesired code locations got changed. Grep the code
for comments containing EMBREE_FIXME and perform the action described in the
comment.

The following changes need to be performed when switching from Embree 2
to Embree 3. Most of these changes are automatically done by the script if not
described differently.

We strongly recommend to set an error callback function (see rtcSetDe-
viceErrorFunction) when porting to Embree 3 to detect all runtime errors
early.

37

6.1 Device
• rtcInit and rtcExit got removed. Please use the device concept using

the rtcNewDevice and rtcReleaseDevice functions instead.

• Functions that conceptually should operate on a device but did not get a
device argument got removed. The upgrade script replaces these functions
by the proper functions that operate on a device, however, manually prop-
agating the device handle to these function calls might still be required.

6.2 Scene
• The API no longer distinguishes between a static and a dynamic scene.

Some users had issues as they wanted to do minor modifications to static
scenes, but maintain high traversal performance.
The new approach gives more flexibility, as each scene is changeable, and
build quality settings can be changed on a commit basis to balance between
build performance and render performance.

• The rtcCommitThread function got removed; use rtcJoinCommitScene
instead.

• The scene now supports different build quality settings. Please use those
instead of the previous way of RTC_SCENE_STATIC, RTC_SCENE_DYNAMIC,
and RTC_SCENE_HIGH_QUALITY flags.

6.3 Geometry
• There is now only one rtcNewGeometry function to create geometries

which gets passed an enum to specify the type of geometry to create.
The number of vertices and primitives of the geometries is inferred from
the size of data buffers.

• We introduced an object type RTCGeometry for all geometries. Previously
a geometry was not a standalone object and could only exist inside a scene.
The new approach comes with more flexibility and more readable code.
Operations like rtcInterpolate can now be performed on the geometry
object directly without the need of a scene. Further, an application can
choose to create its geometries independent of a scene, e.g. each time a
geometry node is added to its scene graph.
This modification changed many API functions to get passed one RTC-
Geometry object instead of a RTCScene and geomID. The script does all
required changed automatically. However, in some cases the script may in-
troduce rtcGetGeometry(scene, geomID) calls to retrieve the geometry
handle. Best store the geometry handle inside your scene representation

38

(and release it in the destructor) and access the handle directly instead of
calling rtcGetGeometry.

• Geometries are not included inside a scene anymore but can be attached to
a single scene using the rtcAttachGeomety or rtcAttachGeometryByID
functions.

• As geometries are separate objects, commit semantics got introduced for
them too. Thus geometries must be committed through the rtcCommit-
Geometry call before getting used. This allows for earlier error checking
and pre-calculating internal data per geometry object.
Such commit points were previously not required in the Embree 2 API.
The upgrade script attempts to insert the commits automatically, but
cannot do so properly under all circumstances. Thus please check if every
rtcCommitGeometry call inserted by the script is properly placed, and
if a rtcCommitGeometry call is placed after a sequence of changes to a
geometry.

• Only the latest version of the previous displacement function call (RTCDis-
placementFunc2) is now supported, and the callback is passed as a struc-
ture containing all arguments.

• The deprecated RTCBoundaryMode type and rtcSetBoundaryMode func-
tion got removed and replaced by RTCSubdivisionMode enum and the
rtcSetGeometrySubdivisionMode function. The script does this replace-
ment automatically.

• Ribbon curves and lines now avoid self-intersections automatically The ap-
plication can be simplified by removing special code paths that previously
did the self-intersection handling.

• The previous Embree 2 way of instancing was suboptimal as it required
user geometries to update the instID field of the ray differently when used
inside an instanced scene or inside a top-level scene. The user geometry
intersection code now just has to copy the context.instID field into the
ray.instID field to function properly under all circumstances.

• The internal instancing code will update the context.instID field prop-
erly when entering or leaving an instance. When instancing is imple-
mented manually through user geometries, the code must be modified to
set the context.instID field properly and no longer pass instID through
the ray. This change must done manually and cannot be performed by
the script.

• We flipped the direction of the geometry normal to the widely used con-
vention that a shape with counter-clockwise layout of vertices has the
normal pointing upwards (right-hand rule). Most modeling tools follow
that convention.

39

The conversion script does not perform this change, thus if required adjust
your code to flip Ng for triangle, quad, and subdivision surfaces.

6.4 Buffers
• With Embree 3 we are introducing explicit RTCBuffer objects. However,

you can still use the short way of sharing buffers with Embree through the
rtcSetSharedGeometryBuffer call.

• The rtcMapBuffer and rtcUnmapBuffer API calls were removed, and we
added the rtcGetBufferData call instead.
Previously the rtcMapBuffer call had the semantics of creating an internal
buffer when no buffer was shared for the corresponding buffer slot. These
invocations of rtcMapBuffer must be replaced by an explicit creation of
an internally managed buffer using the rtcNewGeometryBuffer function.
The upgrade script cannot always detect if the rtcMapBuffer call would
create an internal buffer or just map the buffer pointer. Thus check
whether the rtcNewGeometryBuffer and rtcGetBufferData calls are cor-
rect after the conversion.

• The rtcUpdateGeometryBuffer function now must be called for every
buffer that got modified by the application. Note that the conversion
script cannot automatically detect each location where a buffer update is
now required.

• The buffer type no longer encodes the time step or user vertex buffer index.
Now RTC_VERTEX_BUFFER_TYPE and additional slot specifies the vertex
buffer for a specific time step, and RTC_USER_VERTEX_BUFFER_TYPE and
additional slot specifies a vertex attribute.

6.5 Miscellaneous
• The header files for Embree 3 are now inside the embree3 folder (instead

of embree2 folder) and libembree.so is now called libembree3.so to be
able to install multiple Embree versions side by side. We made the headers
C99 compliant.

• All API objects are now reference counted with release functions to decre-
ment and retain functions to increment the reference count (if required).

• Most callback functions no longer get different arguments as input, but a
pointer to a structure containing all arguments. This results in more read-
able code, faster callback invocation (as some arguments do not change
between invocations) and is extensible, as new members to the structure
can be later added in a backward compatible way (if required).

40

The conversion script can convert the definition and declaration of the old
callback functions in most cases. Before running the script, make sure
that you never type-cast a callback function when assigning it (as this
has the danger of assigning a callback function with a wrong type if the
conversion did not detect some callbacks as such). If the script does not
detect a callback function, make sure the argument types match exactly
the types in the header (e.g. write const int instead of int const or
convert the callback manually).

• An intersection context is now required for each ray query invocation.
The context should be initialized using the rtcInitIntersectContext
function.

• The rtcIntersect-type functions get as input an RTCRayHit type, which
is similar to before, but has the ray and hit parts split into two sub-
structures.
The rtcOccluded-type functions get as input an RTCRay type, which does
not contain hit data anymore. When an occlusion is found, the tfar
element of the ray is set to -inf.
Required code changes cannot be done by the upgrade script and need to
be done manually.

• The ray layout for single rays and packets of rays had certain incompatibil-
ities (alignment of org and dir for single rays caused gaps in the single ray
layout that were not in the ray packet layout). This issue never showed up
because single rays and ray packets were separate in the system initially.
This layout issue is now fixed, and a single ray has the same layout as a
ray packet of size 1.

• Previously Embree supported placing additional data at the end of the
ray structure, and accessing that data inside user geometry callbacks and
filter callback functions.
With Embree 3 this is no longer supported, and the ray passed to a call-
back function may be copied to a different memory location. To attach
additional data to your ray, simply extend the intersection context with
a pointer to that data.
This change cannot be done by the script. Further, code will still work if
you extend the ray as the implementation did not change yet.

• The ray structure now contains an additional id and flags field. The id
can be used to store the index of the ray with respect to a ray packet or
ray stream. The flags is reserved for future use, and currently must be
set to 0.

• All previous intersection filter callback variants have been removed, except
for the RTCFilterFuncN which gets a varying size ray packet as input. The
semantics of this filter function type have changed from copying the hit on

41

acceptance to clearing the ray’s valid argument in case of non-acceptance.
This way, chaining multiple filters is more efficient.
We kept the guarantee that for rtcIntersect1/4/8/16 and rtcOc-
cluded1/4/8/16 calls the packet size and ray order will not change from
the initial size and ordering when entering a filter callback.

• We no longer export ISPC-specific symbols. This has the advantage that
certain linking issues went away, e.g. it is now possible to link an ISPC
application compiled for any combination of ISAs, and link this to an
Embree library compiled with a different set of ISAs. Previously the ISAs
of the application had to be a subset of the ISAs of Embree, and when
the user enabled exactly one ISA, they had to do this in Embree and the
application.

• We no longer export the ISPC tasking system, which means that the
application has the responsibility to implement the ISPC tasking system
itself. ISPC comes with example code on how to do this. This change is
not performed by the script and must be done manually.

• Fixed many naming inconsistencies, and changed names of further API
functions. All these renamings are properly done by the script and need
no further attention.

42

Chapter 7

Embree API Reference

7.1 rtcNewDevice
NAME

rtcNewDevice - creates a new device

SYNOPSIS

#include <embree3/rtcore.h>

RTCDevice rtcNewDevice(const char* config);

DESCRIPTION

This function creates a new device and returns a handle to this device. The
device object is reference counted with an initial reference count of 1. The
handle can be released using the rtcReleaseDevice API call.

The device object acts as a class factory for all other object types. All objects
created from the device (like scenes, geometries, etc.) hold a reference to the
device, thus the device will not be destroyed unless these objects are destroyed
first.

Objects are only compatible if they belong to the same device, e.g it is not
allowed to create a geometry in one device and attach it to a scene created with
a different device.

A configuration string (config argument) can be passed to the device con-
struction. This configuration string can be NULL to use the default configuration.

When creating the device, Embree reads configurations for the device from
the following locations in order:

1) config string passed to the rtcNewDevice function
2) .embree3 file in the application folder
3) .embree3 file in the home folder

43

Settings performed later overwrite previous settings. This way the configura-
tion for the application can be changed globally (either through the rtcNewDe-
vice call or through the .embree3 file in the application folder), and each user
has the option to modify the configuration to fit their needs.

The following configuration is supported:

• threads=[int]: Specifies a number of build threads to use. A value of
0 enables all detected hardware threads. By default all hardware threads
are used.

• user_threads=[int]: Sets the number of user threads that can be used to
join and participate in a scene commit using rtcJoinCommitScene. The
tasking system will only use threads-user_threads many worker threads,
thus if the app wants to solely use its threads to commit scenes, just
set threads equal to user_threads. This option only has effect with the
Intel(R) Threading Building Blocks (TBB) tasking system.

• set_affinity=[0/1]: When enabled, build threads are affinitized to
hardware threads. This option is disabled by default on standard CPUs,
and enabled by default on Xeon Phi Processors.

• start_threads=[0/1]: When enabled, the build threads are started up-
front. This can be useful for benchmarking to exclude thread creation
time. This option is disabled by default.

• isa=[sse2,sse4.2,avx,avx2,avx512knl,avx512skx]: Use specified ISA.
By default the ISA is selected automatically.

• max_isa=[sse2,sse4.2,avx,avx2,avx512knl,avx512skx]: Configures
the automated ISA selection to use maximally the specified ISA.

• hugepages=[0/1]: Enables or disables usage of huge pages. Under Linux
huge pages are used by default but under Windows and macOS they are
disabled by default.

• enable_selockmemoryprivilege=[0/1]: When set to 1, this enables the
SeLockMemoryPrivilege privilege with is required to use huge pages on
Windows. This option has an effect only under Windows and is ignored
on other platforms. See Section Huge Page Support for more details.

• ignore_config_files=[0/1]: When set to 1, configuration files are ig-
nored. Default is 0.

• verbose=[0,1,2,3]: Sets the verbosity of the output. When set to 0, no
output is printed by Embree, when set to a higher level more output is
printed. By default Embree does not print anything on the console.

• frequency_level=[simd128,simd256,simd512]: Specifies the frequency
level the application want to run on, which can be either: a) simd128 for

44

apps that do not use AVX instructions, b) simd256 for apps that use
heavy AVX instruction, c) simd512 for apps that use heavy AVX-512 in-
structions. When some frequency level is specified, Embree will avoid
doing optimizations that may reduce the frequency level below the level
specified. E.g. if your app does not use AVX instructions setting “fre-
quency_level=simd128” will cause some CPUs to run at highest frequency,
which may result in higher application performance. However, this will
prevent Embree from using AVX optimizations to achieve higher ray trac-
ing performance, thus applications that trace many rays may still perform
better with the default setting of simd256, even though this reduces fre-
quency on some CPUs.

Different configuration options should be separated by commas, e.g.:

rtcNewDevice("threads=1,isa=avx");

EXIT STATUS

On success returns a handle of the created device. On failure returns NULL as
device and sets a per-thread error code that can be queried using rtcGetDe-
viceError(NULL).

SEE ALSO

rtcRetainDevice, rtcReleaseDevice

45

7.2 rtcRetainDevice
NAME

rtcRetainDevice - increments the device reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcRetainDevice(RTCDevice device);

DESCRIPTION

Device objects are reference counted. The rtcRetainDevice function incre-
ments the reference count of the passed device object (device argument). This
function together with rtcReleaseDevice allows to use the internal reference
counting in a C++ wrapper class to manage the ownership of the object.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewDevice, rtcReleaseDevice

46

7.3 rtcReleaseDevice
NAME

rtcReleaseDevice - decrements the device reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcReleaseDevice(RTCDevice device);

DESCRIPTION

Device objects are reference counted. The rtcReleaseDevice function decre-
ments the reference count of the passed device object (device argument). When
the reference count falls to 0, the device gets destroyed.

All objects created from the device (like scenes, geometries, etc.) hold a
reference to the device, thus the device will not get destroyed unless these objects
are destroyed first.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewDevice, rtcRetainDevice

47

7.4 rtcGetDeviceProperty
NAME

rtcGetDeviceProperty - queries properties of the device

SYNOPSIS

#include <embree3/rtcore.h>

ssize_t rtcGetDeviceProperty(
RTCDevice device,
enum RTCDeviceProperty prop

);

DESCRIPTION

The rtcGetDeviceProperty function can be used to query properties (prop
argument) of a device object (device argument). The returned property is an
integer of type ssize_t.

Possible properties to query are:

• RTC_DEVICE_PROPERTY_VERSION: Queries the combined version number
(MAJOR.MINOR.PATCH) with two decimal digits per component. E.g.
for Embree 2.8.3 the integer 208003 is returned.

• RTC_DEVICE_PROPERTY_VERSION_MAJOR: Queries the major version num-
ber of Embree.

• RTC_DEVICE_PROPERTY_VERSION_MINOR: Queries the minor version num-
ber of Embree.

• RTC_DEVICE_PROPERTY_VERSION_PATCH: Queries the patch version num-
ber of Embree.

• RTC_DEVICE_PROPERTY_NATIVE_RAY4_SUPPORTED: Queries whether the
rtcIntersect4 and rtcOccluded4 functions preserve packet size and ray
order when invoking callback functions. This is only the case if Embree is
compiled with EMBREE_RAY_PACKETS and SSE2 (or SSE4.2) enabled, and
if the machine it is running on supports SSE2 (or SSE4.2).

• RTC_DEVICE_PROPERTY_NATIVE_RAY8_SUPPORTED: Queries whether the
rtcIntersect8 and rtcOccluded8 functions preserve packet size and
ray order when invoking callback functions. This is only the case if Em-
bree is compiled with EMBREE_RAY_PACKETS and AVX (or AVX2) enabled,
and if the machine it is running on supports AVX (or AVX2).

• RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED: Queries whether the
rtcIntersect16 and rtcOccluded16 functions preserve packet size and

48

ray order when invoking callback functions. This is only the case if Embree
is compiled with EMBREE_RAY_PACKETS and AVX512SKX (or AVX512KNL)
enabled, and if the machine it is running on supports AVX512SKX (or
AVX512KNL).

• RTC_DEVICE_PROPERTY_RAY_STREAM_SUPPORTED: Queries whether rtcIn-
tersect1M, rtcIntersect1Mp, rtcIntersectNM, rtcIntersectNp, rt-
cOccluded1M, rtcOccluded1Mp, rtcOccludedNM, and rtcOccludedNp are
supported. This is only the case if Embree is compiled with EMBREE_RAY_
PACKETS enabled.

• RTC_DEVICE_PROPERTY_RAY_MASK_SUPPORTED: Queries whether ray masks
are supported. This is only the case if Embree is compiled with EMBREE_
RAY_MASK enabled.

• RTC_DEVICE_PROPERTY_BACKFACE_CULLING_ENABLED: Queries whether back
face culling is enabled. This is only the case if Embree is compiled with
EMBREE_BACKFACE_CULLING enabled.

• RTC_DEVICE_PROPERTY_FILTER_FUNCTION_SUPPORTED: Queries whether
filter functions are supported, which is the case if Embree is compiled
with EMBREE_FILTER_FUNCTION enabled.

• RTC_DEVICE_PROPERTY_IGNORE_INVALID_RAYS_ENABLED: Queries whether
invalid rays are ignored, which is the case if Embree is compiled with EM-
BREE_IGNORE_INVALID_RAYS enabled.

• RTC_DEVICE_PROPERTY_TRIANGLE_GEOMETRY_SUPPORTED: Queries whether
triangles are supported, which is the case if Embree is compiled with EM-
BREE_GEOMETRY_TRIANGLE enabled.

• RTC_DEVICE_PROPERTY_QUAD_GEOMETRY_SUPPORTED: Queries whether quads
are supported, which is the case if Embree is compiled with EMBREE_GE-
OMETRY_QUAD enabled.

• RTC_DEVICE_PROPERTY_SUBDIVISION_GEOMETRY_SUPPORTED: Queries whether
subdivision meshes are supported, which is the case if Embree is compiled
with EMBREE_GEOMETRY_SUBDIVISION enabled.

• RTC_DEVICE_PROPERTY_CURVE_GEOMETRY_SUPPORTED: Queries whether curves
are supported, which is the case if Embree is compiled with EMBREE_GE-
OMETRY_CURVE enabled.

• RTC_DEVICE_PROPERTY_POINT_GEOMETRY_SUPPORTED: Queries whether points
are supported, which is the case if Embree is compiled with EMBREE_GE-
OMETRY_POINT enabled.

• RTC_DEVICE_PROPERTY_USER_GEOMETRY_SUPPORTED: Queries whether user
geometries are supported, which is the case if Embree is compiled with
EMBREE_GEOMETRY_USER enabled.

49

• RTC_DEVICE_PROPERTY_TASKING_SYSTEM: Queries the tasking system Em-
bree is compiled with. Possible return values are:

0. internal tasking system
1. Intel Threading Building Blocks (TBB)
2. Parallel Patterns Library (PPL)

• RTC_DEVICE_PROPERTY_COMMIT_JOIN_SUPPORTED: Queries whether rtcJoin-
CommitScene is supported. This is not the case when Embree is compiled
with PPL or older versions of TBB.

EXIT STATUS

On success returns the value of the queried property. For properties returning
a boolean value, the return value 0 denotes false and 1 denotes true.

On failure zero is returned and an error code is set that can be queried using
rtcGetDeviceError.

50

7.5 rtcGetDeviceError
NAME

rtcGetDeviceError - returns the error code of the device

SYNOPSIS

#include <embree3/rtcore.h>

RTCError rtcGetDeviceError(RTCDevice device);

DESCRIPTION

Each thread has its own error code per device. If an error occurs when calling an
API function, this error code is set to the occurred error if it stores no previous
error. The rtcGetDeviceError function reads and returns the currently stored
error and clears the error code. This assures that the returned error code is
always the first error occurred since the last invocation of rtcGetDeviceError.

Possible error codes returned by rtcGetDeviceError are:

• RTC_ERROR_NONE: No error occurred.

• RTC_ERROR_UNKNOWN: An unknown error has occurred.

• RTC_ERROR_INVALID_ARGUMENT: An invalid argument was specified.

• RTC_ERROR_INVALID_OPERATION: The operation is not allowed for the
specified object.

• RTC_ERROR_OUT_OF_MEMORY: There is not enough memory left to complete
the operation.

• RTC_ERROR_UNSUPPORTED_CPU: The CPU is not supported as it does not
support the lowest ISA Embree is compiled for.

• RTC_ERROR_CANCELLED: The operation got canceled by a memory monitor
callback or progress monitor callback function.

When the device construction fails, rtcNewDevice returns NULL as device.
To detect the error code of a such a failed device construction, pass NULL as de-
vice to the rtcGetDeviceError function. For all other invocations of rtcGet-
DeviceError, a proper device pointer must be specified.

EXIT STATUS

Returns the error code for the device.

SEE ALSO

rtcSetDeviceErrorFunction

51

7.6 rtcSetDeviceErrorFunction
NAME

rtcSetDeviceErrorFunction - sets an error callback function for the device

SYNOPSIS

#include <embree3/rtcore.h>

typedef void (*RTCErrorFunction)(
void* userPtr,
RTCError code,
const char* str

);

void rtcSetDeviceErrorFunction(
RTCDevice device,
RTCErrorFunction error,
void* userPtr

);

DESCRIPTION

Using the rtcSetDeviceErrorFunction call, it is possible to set a callback
function (error argument) with payload (userPtr argument), which is called
whenever an error occurs for the specified device (device argument).

Only a single callback function can be registered per device, and further
invocations overwrite the previously set callback function. Passing NULL as
function pointer disables the registered callback function.

When the registered callback function is invoked, it gets passed the user-
defined payload (userPtr argument as specified at registration time), the error
code (code argument) of the occurred error, as well as a string (str argument)
that further describes the error.

The error code is also set if an error callback function is registered.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetDeviceError

52

7.7 rtcSetDeviceMemoryMonitorFunction
NAME

rtcSetDeviceMemoryMonitorFunction - registers a callback function
to track memory consumption

SYNOPSIS

#include <embree3/rtcore.h>

typedef bool (*RTCMemoryMonitorFunction)(
void* userPtr,
ssize_t bytes,
bool post

);

void rtcSetDeviceMemoryMonitorFunction(
RTCDevice device,
RTCMemoryMonitorFunction memoryMonitor,
void* userPtr

);

DESCRIPTION

Using the rtcSetDeviceMemoryMonitorFunction call, it is possible to register a
callback function (memoryMonitor argument) with payload (userPtr argument)
for a device (device argument), which is called whenever internal memory is
allocated or deallocated by objects of that device. Using this memory monitor
callback mechanism, the application can track the memory consumption of an
Embree device, and optionally terminate API calls that consume too much
memory.

Only a single callback function can be registered per device, and further
invocations overwrite the previously set callback function. Passing NULL as
function pointer disables the registered callback function.

Once registered, the Embree device will invoke the memory monitor callback
function before or after it allocates or frees important memory blocks. The call-
back function gets passed the payload as specified at registration time (userPtr
argument), the number of bytes allocated or deallocated (bytes argument), and
whether the callback is invoked after the allocation or deallocation took place
(post argument). The callback function might get called from multiple threads
concurrently.

The application can track the current memory usage of the Embree device
by atomically accumulating the bytes input parameter provided to the callback
function. This parameter will be >0 for allocations and <0 for deallocations.

Embree will continue its operation normally when returning true from the
callback function. If false is returned, Embree will cancel the current oper-

53

ation with the RTC_ERROR_OUT_OF_MEMORY error code. Issuing multiple cancel
requests from different threads is allowed. Canceling will only happen when the
callback was called for allocations (bytes > 0), otherwise the cancel request will
be ignored.

If a callback to cancel was invoked before the allocation happens (post ==
false), then the bytes parameter should not be accumulated, as the allocation
will never happen. If the callback to cancel was invoked after the allocation
happened (post == true), then the bytes parameter should be accumulated,
as the allocation properly happened and a deallocation will later free that data
block.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewDevice

54

7.8 rtcNewScene
NAME

rtcNewScene - creates a new scene

SYNOPSIS

#include <embree3/rtcore.h>

RTCScene rtcNewScene(RTCDevice device);

DESCRIPTION

This function creates a new scene bound to the specified device (device argu-
ment), and returns a handle to this scene. The scene object is reference counted
with an initial reference count of 1. The scene handle can be released using the
rtcReleaseScene API call.

EXIT STATUS

On success a scene handle is returned. On failure NULL is returned and an error
code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcRetainScene, rtcReleaseScene

55

7.9 rtcRetainScene
NAME

rtcRetainScene - increments the scene reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcRetainScene(RTCScene scene);

DESCRIPTION

Scene objects are reference counted. The rtcRetainScene function increments
the reference count of the passed scene object (scene argument). This function
together with rtcReleaseScene allows to use the internal reference counting in
a C++ wrapper class to handle the ownership of the object.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewScene, rtcReleaseScene

56

7.10 rtcReleaseScene
NAME

rtcReleaseScene - decrements the scene reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcReleaseScene(RTCScene scene);

DESCRIPTION

Scene objects are reference counted. The rtcReleaseScene function decrements
the reference count of the passed scene object (scene argument). When the
reference count falls to 0, the scene gets destroyed.

The scene holds a reference to all attached geometries, thus if the scene gets
destroyed, all geometries get detached and their reference count decremented.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewScene, rtcRetainScene

57

7.11 rtcAttachGeometry
NAME

rtcAttachGeometry - attaches a geometry to the scene

SYNOPSIS

#include <embree3/rtcore.h>

unsigned int rtcAttachGeometry(
RTCScene scene,
RTCGeometry geometry

);

DESCRIPTION

The rtcAttachGeometry function attaches a geometry (geometry argument)
to a scene (scene argument) and assigns a geometry ID to that geometry. All
geometries attached to a scene are defined to be included inside the scene. A
geometry can only get attached to a single scene at a given time. However, it is
possible to detach and re-attach a geometry to a different scene. The geometry
ID is unique for the scene, and is used to identify the geometry when hit by a
ray during ray queries.

This function is thread-safe, thus multiple threads can attach geometries to
a scene in parallel.

The geometry IDs are assigned sequentially, starting from 0, as long as no ge-
ometry got detached. If geometries got detached, the implementation will reuse
IDs in an implementation dependent way. Consequently sequential assignment
is no longer guaranteed, but a compact range of IDs.

These rules allow the application to manage a dynamic array to efficiently
map from geometry IDs to its own geometry representation. Alternatively, the
application can also use per-geometry user data to map to its geometry rep-
resentation. See rtcSetGeometryUserData and rtcGetGeometryUserData for
more information.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryUserData, rtcGetGeometryUserData

58

7.12 rtcAttachGeometryByID
NAME

rtcAttachGeometryByID - attaches a geometry to the scene
using a specified geometry ID

SYNOPSIS

#include <embree3/rtcore.h>

void rtcAttachGeometryByID(
RTCScene scene,
RTCGeometry geometry,
unsigned int geomID

);

DESCRIPTION

The rtcAttachGeometryByID function attaches a geometry (geometry argu-
ment) to a scene (scene argument) and assigns a user provided geometry ID
(geomID argument) to that geometry. All geometries attached to a scene are
defined to be included inside the scene. A geometry can only get attached to a
single scene at a given time. However, it is possible to detach and re-attach a
geometry to a different scene. The passed user-defined geometry ID is used to
identify the geometry when hit by a ray during ray queries. Using this function,
it is possible to share the same IDs to refer to geometries inside the application
and Embree.

This function is thread-safe, thus multiple threads can attach geometries to
a scene in parallel.

The user-provided geometry ID must be unused in the scene, otherwise the
creation of the geometry will fail. Further, the user-provided geometry IDs
should be compact, as Embree internally creates a vector which size is equal
to the largest geometry ID used. Creating very large geometry IDs for small
scenes would thus cause a memory consumption and performance overhead.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcAttachGeometry

59

7.13 rtcDetachGeometry
NAME

rtcDetachGeometry - detaches a geometry from the scene

SYNOPSIS

#include <embree3/rtcore.h>

void rtcDetachGeometry(RTCScene scene, unsigned int geomID);

DESCRIPTION

This function detaches a geometry identified by its geometry ID (geomID ar-
gument) from a scene (scene argument). When detached, the geometry is no
longer contained in the scene.

This function is thread-safe, thus multiple threads can detach geometries
from a scene at the same time.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcAttachGeometry, rtcAttachGeometryByID

60

7.14 rtcGetGeometry
NAME

rtcGetGeometry - returns the geometry bound to
the specified geometry ID

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry rtcGetGeometry(RTCScene scene, unsigned int geomID);

DESCRIPTION

The rtcGetGeometry function returns the geometry that is bound to the speci-
fied geometry ID (geomID argument) for the specified scene (scene argument).
This function just looks up the handle and does not increment the reference
count. If you want to get ownership of the handle, you need to additionally
call rtcRetainGeometry. For this reason, this function is fast and can be used
during rendering. However, it is generally recommended to store the geometry
handle inside the application’s geometry representation and look up the geom-
etry handle from that representation directly.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO

rtcAttachGeometry, rtcAttachGeometryByID

61

7.15 rtcCommitScene
NAME

rtcCommitScene - commits scene changes

SYNOPSIS

#include <embree3/rtcore.h>

void rtcCommitScene(RTCScene scene);

DESCRIPTION

The rtcCommitScene function commits all changes for the specified scene
(scene argument). This internally triggers building of a spatial acceleration
structure for the scene using all available worker threads. Ray queries can be
performed only after committing all scene changes.

If scene geometries get modified or attached or detached, the rtcCom-
mitScene call must be invoked before performing any further ray queries for
the scene; otherwise the effect of the ray query is undefined. The modification
of a geometry, committing the scene, and tracing of rays must always happen
sequentially, and never at the same time. Any API call that sets a property
of the scene or geometries contained in the scene count as scene modification,
e.g. including setting of intersection filter functions.

The kind of acceleration structure built can be influenced using scene flags
(see rtcSetSceneFlags), and the quality can be specified using the rtc-
SetSceneBuildQuality function.

Embree silently ignores primitives during spatial acceleration structure con-
struction that would cause numerical issues, e.g. primitives containing NaNs,
INFs, or values greater than 1.844E18f (as no reasonable calculations can be
performed with such values without causing overflows).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcJoinCommitScene

62

7.16 rtcJoinCommitScene
NAME

rtcJoinCommitScene - commits the scene from multiple threads

SYNOPSIS

#include <embree3/rtcore.h>

void rtcJoinCommitScene(RTCScene scene);

DESCRIPTION

The rtcJoinCommitScene function commits all changes for the specified scene
(scene argument). In contrast to the rtcCommitScene function, the rtcJoin-
CommitScene function can be called from multiple threads, which all cooperate
in the same scene commit. All threads will return from this function after
the scene commit is finished. All threads must consistently call rtcJoinCom-
mitScene and not rtcCommitScene.

The scene commit internally triggers building of a spatial acceleration struc-
ture for the scene. Ray queries can be performed after scene changes got properly
committed.

The rtcJoinCommitScene feature allows a flexible way to lazily create hi-
erarchies during rendering. A thread reaching a not-yet-constructed sub-scene
of a two-level scene can generate the sub-scene geometry and call rtcJoinCom-
mitScene on that just generated scene. During construction, further threads
reaching the not-yet-built scene can join the build operation by also invoking
rtcJoinCommitScene. A thread that calls rtcJoinCommitScene after the build
finishes will directly return from the rtcJoinCommitScene call.

Multiple scene commit operations on different scenes can be running at the
same time, hence it is possible to commit many small scenes in parallel, dis-
tributing the commits to many threads.

When using Embree with the Intel® Threading Building Blocks (which is the
default), threads that call rtcJoinCommitScene will join the build operation,
but other TBB worker threads might also participate in the build. To avoid
thread oversubscription, we recommend using TBB also inside the application.
Further, the join mode only works properly starting with TBB v4.4 Update
1. For earlier TBB versions, threads that call rtcJoinCommitScene to join a
running build will just trigger the build and wait for the build to finish. Further,
old TBB versions with TBB_INTERFACE_VERSION_MAJOR < 8 do not support
rtcJoinCommitScene, and invoking this function will result in an error.

When using Embree with the internal tasking system, only threads that
call rtcJoinCommitScene will perform the build operation, and no additional
worker threads will be scheduled.

When using Embree with the Parallel Patterns Library (PPL), rtcJoin-
CommitScene is not supported and calling that function will result in an error.

63

To detect whether rtcJoinCommitScene is supported, use the rtcGetDevi-
ceProperty function.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcCommitScene, rtcGetDeviceProperty

64

7.17 rtcSetSceneProgressMonitorFunction
NAME

rtcSetSceneProgressMonitorFunction - registers a callback
to track build progress

SYNOPSIS

#include <embree3/rtcore.h>

typedef bool (*RTCProgressMonitorFunction)(
void* ptr,
double n

);

void rtcSetSceneProgressMonitorFunction(
RTCScene scene,
RTCProgressMonitorFunction progress,
void* userPtr

);

DESCRIPTION

Embree supports a progress monitor callback mechanism that can be used to
report progress of hierarchy build operations and to cancel build operations.

The rtcSetSceneProgressMonitorFunction registers a progress monitor
callback function (progress argument) with payload (userPtr argument) for
the specified scene (scene argument).

Only a single callback function can be registered per scene, and further
invocations overwrite the previously set callback function. Passing NULL as
function pointer disables the registered callback function.

Once registered, Embree will invoke the callback function multiple times
during hierarchy build operations of the scene, by passing the payload as set at
registration time (userPtr argument), and a double in the range [0, 1] which
estimates the progress of the operation (n argument). The callback function
might be called from multiple threads concurrently.

When returning true from the callback function, Embree will continue the
build operation normally. When returning false, Embree will cancel the build
operation with the RTC_ERROR_CANCELLED error code. Issuing multiple cancel
requests for the same build operation is allowed.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

65

SEE ALSO

rtcNewScene

66

7.18 rtcSetSceneBuildQuality
NAME

rtcSetSceneBuildQuality - sets the build quality for
the scene

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetSceneBuildQuality(
RTCScene scene,
enum RTCBuildQuality quality

);

DESCRIPTION

The rtcSetSceneBuildQuality function sets the build quality (quality argu-
ment) for the specified scene (scene argument). Possible values for the build
quality are:

• RTC_BUILD_QUALITY_LOW: Create lower quality data structures, e.g. for
dynamic scenes. A two-level spatial index structure is built when enabling
this mode, which supports fast partial scene updates, and allows for setting
a per-geometry build quality through the rtcSetGeometryBuildQuality
function.

• RTC_BUILD_QUALITY_MEDIUM: Default build quality for most usages. Gives
a good compromise between build and render performance.

• RTC_BUILD_QUALITY_HIGH: Create higher quality data structures for final-
frame rendering. For certain geometry types this enables a spatial split
BVH.

Selecting a higher build quality results in better rendering performance but
slower scene commit times. The default build quality for a scene is RTC_BUILD_
QUALITY_MEDIUM.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryBuildQuality

67

7.19 rtcSetSceneFlags
NAME

rtcSetSceneFlags - sets the flags for the scene

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetSceneFlags(RTCScene scene, enum RTCSceneFlags flags);

DESCRIPTION

The rtcSetSceneFlags function sets the scene flags (flags argument) for the
specified scene (scene argument). Possible scene flags are:

• RTC_SCENE_FLAG_NONE: No flags set.

• RTC_SCENE_FLAG_DYNAMIC: Provides better build performance for dy-
namic scenes (but also higher memory consumption).

• RTC_SCENE_FLAG_COMPACT: Uses compact acceleration structures and avoids
algorithms that consume much memory.

• RTC_SCENE_FLAG_ROBUST: Uses acceleration structures that allow for ro-
bust traversal, and avoids optimizations that reduce arithmetic accuracy.
This mode is typically used for avoiding artifacts caused by rays shooting
through edges of neighboring primitives.

• RTC_SCENE_FLAG_CONTEXT_FILTER_FUNCTION: Enables support for a filter
function inside the intersection context. See Section rtcInitIntersectCon-
text for more details.

Multiple flags can be enabled using an or operation, e.g. RTC_SCENE_FLAG_
COMPACT | RTC_SCENE_FLAG_ROBUST.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetSceneFlags

68

7.20 rtcGetSceneFlags
NAME

rtcGetSceneFlags - returns the flags of the scene

SYNOPSIS

#include <embree3/rtcore.h>

enum RTCSceneFlags rtcGetSceneFlags(RTCScene scene);

DESCRIPTION

Queries the flags of a scene. This function can be useful when setting individual
flags, e.g. to just set the robust mode without changing other flags the following
way:

RTCSceneFlags flags = rtcGetSceneFlags(scene);
rtcSetSceneFlags(scene, RTC_SCENE_FLAG_ROBUST | flags);

EXIT STATUS

On failure RTC_SCENE_FLAG_NONE is returned and an error code is set that can
be queried using rtcGetDeviceError.

SEE ALSO

rtcSetSceneFlags

69

7.21 rtcGetSceneBounds
NAME

rtcGetSceneBounds - returns the axis-aligned bounding box of the scene

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCORE_ALIGN(16) RTCBounds
{
float lower_x, lower_y, lower_z, align0;
float upper_x, upper_y, upper_z, align1;

};

void rtcGetSceneBounds(
RTCScene scene,
struct RTCBounds* bounds_o

);

DESCRIPTION

The rtcGetSceneBounds function queries the axis-aligned bounding box of the
specified scene (scene argument) and stores that bounding box to the provided
destination pointer (bounds_o argument). The stored bounding box consists
of lower and upper bounds for the x, y, and z dimensions as specified by the
RTCBounds structure.

The provided destination pointer must be aligned to 16 bytes. The func-
tion may be invoked only after committing the scene; otherwise the result is
undefined.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetSceneLinearBounds, rtcCommitScene, rtcJoinCommitScene

70

7.22 rtcGetSceneLinearBounds
NAME

rtcGetSceneLinearBounds - returns the linear bounds of the scene

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCORE_ALIGN(16) RTCLinearBounds
{
RTCBounds bounds0;
RTCBounds bounds1;

};

void rtcGetSceneLinearBounds(
RTCScene scene,
struct RTCLinearBounds* bounds_o

);

DESCRIPTION

The rtcGetSceneLinearBounds function queries the linear bounds of the speci-
fied scene (scene argument) and stores them to the provided destination pointer
(bounds_o argument). The stored linear bounds consist of bounding boxes for
time 0 (bounds0 member) and time 1 (bounds1 member) as specified by the
RTCLinearBounds structure. Linearly interpolating these bounds to a specific
time t yields bounds for the geometry at that time.

The provided destination pointer must be aligned to 16 bytes. The function
may be called only after committing the scene, otherwise the result is undefined.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetSceneBounds, rtcCommitScene, rtcJoinCommitScene

71

7.23 rtcNewGeometry
NAME

rtcNewGeometry - creates a new geometry object

SYNOPSIS

#include <embree3/rtcore.h>

enum RTCGeometryType
{
RTC_GEOMETRY_TYPE_TRIANGLE,
RTC_GEOMETRY_TYPE_QUAD,
RTC_GEOMETRY_TYPE_SUBDIVISION,
RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE,
RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE,
RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE,
RTC_GEOMETRY_TYPE_GRID,
RTC_GEOMETRY_TYPE_SPHERE_POINT,
RTC_GEOMETRY_TYPE_DISC_POINT,
RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT,
RTC_GEOMETRY_TYPE_USER,
RTC_GEOMETRY_TYPE_INSTANCE

};

RTCGeometry rtcNewGeometry(
RTCDevice device,
enum RTCGeometryType type

);

DESCRIPTION

Geometries are objects that represent an array of primitives of the same type.
The rtcNewGeometry function creates a new geometry of specified type (type
argument) bound to the specified device (device argument) and returns a han-
dle to this geometry. The geometry object is reference counted with an initial
reference count of 1. The geometry handle can be released using the rtcRe-
leaseGeometry API call.

Supported geometry types are triangle meshes (RTC_GEOMETRY_TYPE_TRI-
ANGLE type), quad meshes (triangle pairs) (RTC_GEOMETRY_TYPE_QUAD type),
Catmull-Clark subdivision surfaces (RTC_GEOMETRY_TYPE_SUBDIVISION type),
curve geometries with different bases (RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE,

72

RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE, RTC_GEOMETRY_TYPE_FLAT_BEZIER_
CURVE, RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE, RTC_GEOMETRY_TYPE_FLAT_
BSPLINE_CURVE, RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE, RTC_GEOME-
TRY_TYPE_ROUND_CATMULL_ROM_CURVE, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_
BEZIER_CURVE, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE, RTC_
GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE types), grid meshes
(RTC_GEOMETRY_TYPE_GRID), point geometries (RTC_GEOMETRY_TYPE_SPHERE_
POINT, RTC_GEOMETRY_TYPE_DISC_POINT, RTC_TYPE_ORIENTED_DISC_POINT),
user-defined geometries (RTC_GEOMETRY_TYPE_USER), and instances (RTC_GE-
OMETRY_TYPE_INSTANCE).

The types RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE, RTC_GEOMETRY_TYPE_
ROUND_BSPLINE_CURVE, and RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE
will treat the curve as a sweep surface of a varying-radius circle swept tangen-
tially along the curve. The types RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE, and RTC_GEOMETRY_TYPE_FLAT_
CATMULL_ROM_CURVE use ray-facing ribbons as a faster-to-intersect approxima-
tion.

After construction, geometries are enabled by default and not attached to
any scene. Geometries can be disabled (rtcDisableGeometry call), and enabled
again (rtcEnableGeometry call). A geometry can be attached to a single scene
using the rtcAttachGeometry call (or rtcAttachGeometryByID call), and de-
tached using the rtcDetachGeometry call. During attachment, a geometry ID
is assigned to the geometry (or assigned by the user when using the rtcAttach-
GeometryByID call), which uniquely identifies the geometry inside that scene.
This identifier is returned when primitives of the geometry are hit in later ray
queries for the scene.

Geometries can also be modified, including their vertex and index buffers.
After modifying a buffer, rtcUpdateGeometryBuffer must be called to notify
that the buffer got modified.

The application can use the rtcSetGeometryUserData function to set a user
data pointer to its own geometry representation, and later read out this pointer
using the rtcGetGeometryUserData function.

After setting up the geometry or modifying it, rtcCommitGeometry must
be called to finish the geometry setup. After committing the geometry, vertex
data interpolation can be performed using the rtcInterpolate and rtcInter-
polateN functions.

A build quality can be specified for a geometry using the rtcSetGeometry-
BuildQuality function, to balance between acceleration structure build per-
formance and ray query performance. The build quality per geometry will be
used if a two-level acceleration structure is built internally, which is the case
if the RTC_BUILD_QUALITY_LOW is set as the scene build quality. See Section
rtcSetSceneBuildQuality for more details.

73

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO

rtcEnableGeometry, rtcDisableGeometry, rtcAttachGeometry, rtcAttachGeom-
etryByID, rtcUpdateGeometryBuffer, rtcSetGeometryUserData, rtcGetGeom-
etryUserData, rtcCommitGeometry, rtcInterpolate, rtcInterpolateN, rtcSetGe-
ometryBuildQuality, rtcSetSceneBuildQuality, RTC_GEOMETRY_TYPE_TRIANGLE,
RTC_GEOMETRY_TYPE_QUAD, RTC_GEOMETRY_TYPE_SUBDIVISION,
RTC_GEOMETRY_TYPE_CURVE, RTC_GEOMETRY_TYPE_GRID, RTC_GEOMETRY_TYPE_POINT,
RTC_GEOMETRY_TYPE_USER, RTC_GEOMETRY_TYPE_INSTANCE

74

7.24 RTC_GEOMETRY_TYPE_TRIANGLE
NAME

RTC_GEOMETRY_TYPE_TRIANGLE - triangle geometry type

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_TRIANGLE);

DESCRIPTION

Triangle meshes are created by passing RTC_GEOMETRY_TYPE_TRIANGLE to the
rtcNewGeometry function call. The triangle indices can be specified by setting
an index buffer (RTC_BUFFER_TYPE_INDEX type) and the triangle vertices by
setting a vertex buffer (RTC_BUFFER_TYPE_VERTEX type). See rtcSetGeome-
tryBuffer and rtcSetSharedGeometryBuffer for more details on how to set
buffers. The index buffer must contain an array of three 32-bit indices per trian-
gle (RTC_FORMAT_UINT3 format) and the number of primitives is inferred from
the size of that buffer. The vertex buffer must contain an array of single pre-
cision x, y, z floating point coordinates (RTC_FORMAT_FLOAT3 format), and the
number of vertices are inferred from the size of that buffer. The vertex buffer
can be at most 16 GB large.

The parametrization of a triangle uses the first vertex p0 as base point, the
vector p1 - p0 as u-direction and the vector p2 - p0 as v-direction. Thus
vertex attributes t0,t1,t2 can be linearly interpolated over the triangle the
following way:

t_uv = (1-u-v)*t0 + u*t1 + v*t2
= t0 + u*(t1-t0) + v*(t2-t0)

A triangle whose vertices are laid out counter-clockwise has its geometry
normal pointing upwards outside the front face, like illustrated in the following
picture:

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount call. Then a vertex buffer for
each time step can be set using different buffer slots, and all these buffers have
to have the same stride and size.

Also see tutorial Triangle Geometry for an example of how to create triangle
meshes.

EXIT STATUS

On failure NULL is returned and an error code is set that be get queried using
rtcGetDeviceError.

75

Ng

p0

p2

p1

u

v

Figure 7.1:

SEE ALSO

rtcNewGeometry

76

7.25 RTC_GEOMETRY_TYPE_QUAD
NAME

RTC_GEOMETRY_TYPE_QUAD - quad geometry type

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_QUAD);

DESCRIPTION

Quad meshes are created by passing RTC_GEOMETRY_TYPE_QUAD to the rtcNew-
Geometry function call. The quad indices can be specified by setting an index
buffer (RTC_BUFFER_TYPE_INDEX type) and the quad vertices by setting a ver-
tex buffer (RTC_BUFFER_TYPE_VERTEX type). See rtcSetGeometryBuffer and
rtcSetSharedGeometryBuffer for more details on how to set buffers. The in-
dex buffer contains an array of four 32-bit indices per quad (RTC_FORMAT_UINT4
format), and the number of primitives is inferred from the size of that buffer.
The vertex buffer contains an array of single precision x, y, z floating point co-
ordinates (RTC_FORMAT_FLOAT3 format), and the number of vertices is inferred
from the size of that buffer. The vertex buffer can be at most 16 GB large.

A quad is internally handled as a pair of two triangles v0,v1,v3 and
v2,v3,v1, with the u'/v' coordinates of the second triangle corrected by u
= 1-u' and v = 1-v' to produce a quad parametrization where u and v are in
the range 0 to 1. Thus the parametrization of a quad uses the first vertex p0 as
base point, and the vector p1 - p0 as u-direction, and p3 - p0 as v-direction.
Thus vertex attributes t0,t1,t2,t3 can be bilinearly interpolated over the
quadrilateral the following way:

t_uv = (1-v)((1-u)*t0 + u*t1) + v*((1-u)*t3 + u*t2)

Mixed triangle/quad meshes are supported by encoding a triangle as a quad,
which can be achieved by replicating the last triangle vertex (v0,v1,v2 ->
v0,v1,v2,v2). This way the second triangle is a line (which can never get hit),
and the parametrization of the first triangle is compatible with the standard
triangle parametrization.

A quad whose vertices are laid out counter-clockwise has its geometry normal
pointing upwards outside the front face, like illustrated in the following picture.

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount call. Then a vertex buffer for
each time step can be set using different buffer slots, and all these buffers must
have the same stride and size.

77

Ng

p0

u

v

p3

p2

p1

Figure 7.2:

78

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO

rtcNewGeometry

79

7.26 RTC_GEOMETRY_TYPE_GRID
NAME

RTC_GEOMETRY_TYPE_GRID - grid geometry type

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_GRID);

DESCRIPTION

Grid meshes are created by passing RTC_GEOMETRY_TYPE_GRID to the rtcNew-
Geometry function call, and contain an array of grid primitives. This array
of grids can be specified by setting up a grid buffer (with RTC_BUFFER_TYPE_
GRID type and RTC_FORMAT_GRID format) and the grid mesh vertices by setting
a vertex buffer (RTC_BUFFER_TYPE_VERTEX type). See rtcSetGeometryBuffer
and rtcSetSharedGeometryBuffer for more details on how to set buffers. The
number of grid primitives in the grid mesh is inferred from the size of the grid
buffer.

The vertex buffer contains an array of single precision x, y, z floating point
coordinates (RTC_FORMAT_FLOAT3 format), and the number of vertices is inferred
from the size of that buffer.

Each grid in the grid buffer is of the type RTCGrid:

struct RTCGrid
{
unsigned int startVertexID;
unsigned int stride;
unsigned short width,height;

};

The RTCGrid structure describes a 2D grid of vertices (with respect to the
vertex buffer of the grid mesh). The width and height members specify the
number of vertices in u and v direction, e.g. setting both width and height to
3 sets up a 3×3 vertex grid. The maximum allowed width and height is 32767.
The startVertexID specifies the ID of the top-left vertex in the vertex grid,
while the stride parameter specifies a stride (in number of vertices) used to
step to the next row.

A vertex grid of dimensions width and height is treated as a (width-1) x
(height-1) grid of quads (triangle-pairs), with the same shared edge handling
as for regular quad meshes. However, the u/v coordinates have the uniform
range [0..1] for an entire vertex grid. The u direction follows the width of the
grid while the v direction the height.

80

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount call. Then a vertex buffer for
each time step can be set using different buffer slots, and all these buffers must
have the same stride and size.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO

rtcNewGeometry

81

7.27 RTC_GEOMETRY_TYPE_SUBDIVISION
NAME

RTC_GEOMETRY_TYPE_SUBDIVISION - subdivision geometry type

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_SUBDIVISION);

DESCRIPTION

Catmull-Clark subdivision meshes are supported, including support for edge
creases, vertex creases, holes, non-manifold geometry, and face-varying interpo-
lation. The number of vertices per face can be in the range of 3 to 15 vertices
(triangles, quadrilateral, pentagons, etc).

Subdivision meshes are created by passing RTC_GEOMETRY_TYPE_SUBDIVI-
SION to the rtcNewGeometry function. Various buffers need to be set by the
application to set up the subdivision mesh. See rtcSetGeometryBuffer and
rtcSetSharedGeometryBuffer for more details on how to set buffers. The face
buffer (RTC_BUFFER_TYPE_FACE type and RTC_FORMAT_UINT format) contains
the number of edges/indices of each face (3 to 15), and the number of faces is
inferred from the size of this buffer. The index buffer (RTC_BUFFER_TYPE_IN-
DEX type) contains multiple (3 to 15) 32-bit vertex indices (RTC_FORMAT_UINT
format) for each face, and the number of edges is inferred from the size of this
buffer. The vertex buffer (RTC_BUFFER_TYPE_VERTEX type) stores an array of
single precision x, y, z floating point coordinates (RTC_FORMAT_FLOAT3 format),
and the number of vertices is inferred from the size of this buffer.

Optionally, the application may set additional index buffers using different
buffer slots if multiple topologies are required for face-varying interpolation. The
standard vertex buffers (RTC_BUFFER_TYPE_VERTEX) are always bound to the
geometry topology (topology 0) thus use RTC_BUFFER_TYPE_INDEX with buffer
slot 0. User vertex data interpolation may use different topologies as described
later.

Optionally, the application can set up the hole buffer (RTC_BUFFER_TYPE_
HOLE) which contains an array of 32-bit indices (RTC_FORMAT_UINT format) of
faces that should be considered non-existing in all topologies. The number of
holes is inferred from the size of this buffer.

Optionally, the application can fill the level buffer (RTC_BUFFER_TYPE_
LEVEL) with a tessellation rate for each of the edges of each face. This buffer
must have the same size as the index buffer. The tessellation level is a positive
floating point value (RTC_FORMAT_FLOAT format) that specifies how many quads
along the edge should be generated during tessellation. If no level buffer is spec-
ified, a level of 1 is used. The maximally supported edge level is 4096, and larger

82

levels are clamped to that value. Note that edges may be shared between (typ-
ically 2) faces. To guarantee a watertight tessellation, the level of these shared
edges should be identical. A uniform tessellation rate for an entire subdivision
mesh can be set by using the rtcSetGeometryTessellationRate function. The
existence of a level buffer has precedence over the uniform tessellation rate.

Optionally, the application can fill the sparse edge crease buffers to make
edges appear sharper. The edge crease index buffer (RTC_BUFFER_TYPE_EDGE_
CREASE_INDEX) contains an array of pairs of 32-bit vertex indices (RTC_FORMAT_
UINT2 format) that specify unoriented edges in the geometry topology. The
edge crease weight buffer (RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT) stores for
each of these crease edges a positive floating point weight (RTC_FORMAT_FLOAT
format). The number of edge creases is inferred from the size of these buffers,
which has to be identical. The larger a weight, the sharper the edge. Specifying
a weight of infinity is supported and marks an edge as infinitely sharp. Storing
an edge multiple times with the same crease weight is allowed, but has lower
performance. Storing an edge multiple times with different crease weights results
in undefined behavior. For a stored edge (i,j), the reverse direction edges (j,i) do
not have to be stored, as both are considered the same unoriented edge. Edge
crease features are shared between all topologies.

Optionally, the application can fill the sparse vertex crease buffers to make
vertices appear sharper. The vertex crease index buffer (RTC_BUFFER_TYPE_
VERTEX_CREASE_INDEX), contains an array of 32-bit vertex indices (RTC_FOR-
MAT_UINT format) to specify a set of vertices from the geometry topology. The
vertex crease weight buffer (RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT) speci-
fies for each of these vertices a positive floating point weight (RTC_FORMAT_FLOAT
format). The number of vertex creases is inferred from the size of these buffers,
and has to be identical. The larger a weight, the sharper the vertex. Specifying
a weight of infinity is supported and makes the vertex infinitely sharp. Storing a
vertex multiple times with the same crease weight is allowed, but has lower per-
formance. Storing a vertex multiple times with different crease weights results
in undefined behavior. Vertex crease features are shared between all topologies.

Subdivision modes can be used to force linear interpolation for parts of the
subdivision mesh; see rtcSetGeometrySubdivisionMode for more details.

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount call. Then a vertex buffer for
each time step can be set using different buffer slots, and all these buffers have
to have the same stride and size.

Also see tutorial Subdivision Geometry for an example of how to create
subdivision surfaces.

Parametrization

The parametrization for subdivision faces is different for quadrilaterals and non-
quadrilateral faces.

The parametrization of a quadrilateral face uses the first vertex p0 as base
point, and the vector p1 - p0 as u-direction and p3 - p0 as v-direction.

83

The parametrization for all other face types (with number of vertices not
equal 4), have a special parametrization where the subpatch ID n (of the n-th
quadrilateral that would be obtained by a single subdivision step) and the local
hit location inside this quadrilateral are encoded in the UV coordinates. The
following code extracts the sub-patch ID i and local UVs of this subpatch:

unsigned int l = floorf(0.5f*U);
unsigned int h = floorf(0.5f*V);
unsigned int i = 4*h+l;
float u = 2.0f*fracf(0.5f*U)-0.5f;
float v = 2.0f*fracf(0.5f*V)-0.5f;

This encoding allows local subpatch UVs to be in the range [-0.5,1.5[thus
negative subpatch UVs can be passed to rtcInterpolate to sample subpatches
slightly out of bounds. This can be useful to calculate derivatives using finite
differences if required. The encoding further has the property that one can just
move the value u (or v) on a subpatch by adding du (or dv) to the special UV
encoding as long as it does not fall out of the [-0.5,1.5[range.

To smoothly interpolate vertex attributes over the subdivision surface we
recommend using the rtcInterpolate function, which will apply the standard
subdivision rules for interpolation and automatically takes care of the special
UV encoding for non-quadrilaterals.

Face-Varying Data

Face-varying interpolation is supported through multiple topologies per subdivi-
sion mesh and binding such topologies to vertex attribute buffers to interpolate.
This way, texture coordinates may use a different topology with additional
boundaries to construct separate UV regions inside one subdivision mesh.

Each such topology i has a separate index buffer (specified using RTC_
BUFFER_TYPE_INDEX with buffer slot i) and separate subdivision mode that can
be set using rtcSetGeometrySubdivisionMode. A vertex attribute buffer RTC_
BUFFER_TYPE_VERTEX_ATTRIBUTE bound to a buffer slot j can be assigned to
use a topology for interpolation using the rtcSetGeometryVertexAttribute-
Topology call.

The face buffer (RTC_BUFFER_TYPE_FACE type) is shared between all topolo-
gies, which means that the n-th primitive always has the same number of vertices
(e.g. being a triangle or a quad) for each topology. However, the indices of the
topologies themselves may be different.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO

rtcNewGeometry

84

7.28 RTC_GEOMETRY_TYPE_CURVE
NAME

RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE -
flat curve geometry with linear basis

RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE -
flat curve geometry with cubic Bézier basis

RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE -
flat curve geometry with cubic B-spline basis

RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE -
flat curve geometry with cubic Hermite basis

RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE -
flat curve geometry with Catmull-Rom basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE -
flat normal oriented curve geometry with cubic Bézier basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE -
flat normal oriented curve geometry with cubic B-spline basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE -
flat normal oriented curve geometry with cubic Hermite basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE -
flat normal oriented curve geometry with Catmull-Rom basis

RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE -
sweep surface curve geometry with cubic Bézier basis

RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE -
sweep surface curve geometry with cubic B-spline basis

RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE -
sweep surface curve geometry with cubic Hermite basis

RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE -
sweep surface curve geometry with Catmull-Rom basis

85

SYNOPSIS

#include <embree3/rtcore.h>

rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE);

DESCRIPTION

Curves with per vertex radii are supported with linear, cubic Bézier, cu-
bic B-spline, and cubic Hermite bases. Such curve geometries are created
by passing RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE, RTC_GEOMETRY_TYPE_
FLAT_BEZIER_CURVE, RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE, RTC_GEOM-
ETRY_TYPE_FLAT_HERMITE_CURVE, RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_
CURVE, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_FLAT_BEZIER_CURVE, RTC_GE-
OMETRY_TYPE_NORMAL_ORIENTED_FLAT_BSPLINE_CURVE, RTC_GEOMETRY_TYPE_
NORMAL_ORIENTED_FLAT_HERMITE_CURVE, RTC_GEOMETRY_TYPE_NORMAL_ORI-
ENTED_FLAT_CATMULL_ROM_CURVE, RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE, RTC_GEOMETRY_TYPE_ROUND_HER-
MITE_CURVE, or RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE to the rtc-
NewGeometry function. The curve indices can be specified through an index
buffer (RTC_BUFFER_TYPE_INDEX) and the curve vertices through a vertex buffer
(RTC_BUFFER_TYPE_VERTEX). For the Hermite basis a tangent buffer (RTC_
BUFFER_TYPE_TANGENT), normal oriented curves a normal buffer (RTC_BUFFER_
TYPE_NORMAL), and for normal oriented Hermite curves a normal derivative
buffer (RTC_BUFFER_TYPE_NORMAL_DERIVATIVE) has to get specified addition-
ally. See rtcSetGeometryBuffer and rtcSetSharedGeometryBuffer for more
details on how to set buffers.

The index buffer contains an array of 32-bit indices (RTC_FORMAT_UINT for-
mat), each pointing to the first control vertex in the vertex buffer, but also to
the first tangent in the tangent buffer, and first normal in the normal buffer if
these buffers are present.

The vertex buffer stores each control vertex in the form of a single precision
position and radius stored in (x, y, z, r) order in memory (RTC_FORMAT_FLOAT4
format). The number of vertices is inferred from the size of this buffer. The

86

radii may be smaller than zero but the interpolated radii should always be
greater or equal to zero. Similarly, the tangent buffer stores the derivative of
each control vertex (x, y, z, r order and RTC_FORMAT_FLOAT4 format) and the
normal buffer stores a single precision normal per control vertex (x, y, z order
and RTC_FORMAT_FLOAT3 format).

For the linear basis the indices point to the first of 2 consecutive control
points in the vertex buffer. The first control point is the start and the second
control point the end of the line segment. When constructing hair strands in
this basis, the end-point can be shared with the start of the next line segment.

For the cubic Bézier basis the indices point to the first of 4 consecutive
control points in the vertex buffer. These control points use the cubic Bézier
basis, where the first control point represents the start point of the curve, and
the 4th control point the end point of the curve. The Bézier basis is interpolating,
thus the curve does go exactly through the first and fourth control vertex.

For the cubic B-spline basis the indices point to the first of 4 consecutive
control points in the vertex buffer. These control points make up a cardinal
cubic B-spline (implicit equidistant knot vector). This basis is not interpolat-
ing, thus the curve does in general not go through any of the control points
directly. A big advantage of this basis is that 3 control points can be shared for
two continuous neighboring curve segments, e.g. the curves (p0,p1,p2,p3) and
(p1,p2,p3,p4) are C1 continuous. This feature make this basis a good choise
to construct continuous multi-segment curves, as memory consumption can be
kept minimal.

For the cubic Hermite basis the indices point to the first of 2 consecutive
points in the vertex buffer, and the first of 2 consecutive tangents in the tan-
gent buffer. These two points and two tangents make up a cubic Hermite curve.
This basis is interpolating, thus does exactly go through the first and second
control point, and the first order derivative at the begin and end matches ex-
actly the value specified in the tangent buffer. When connecting two segments
continuously, the end point and tangent of the previous segment can be shared.
Different versions of Catmull-Rom splines can be easily constructed usig the
Hermite basis, by calculating a proper tangent buffer from the control points.

For the Catmull-Rom basis the indices point to the first of 4 consecutive
control points in the vertex buffer. This basis goes through p0 and p3, with
p0-p1 and p2-p3 tangents.

The RTC_GEOMETRY_TYPE_FLAT_* flat mode is a fast mode designed to render
distant hair. In this mode the curve is rendered as a connected sequence of
ray facing quads. Individual quads are considered to have subpixel size, and
zooming onto the curve might show geometric artifacts. The number of quads to
subdivide into can be specified through the rtcSetGeometryTessellationRate
function. By default the tessellation rate is 4.

The RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_* mode is a mode designed to
render blades of grass. In this mode a vertex spline has to get specified as for
the previous modes, but additionally a normal spline is required. If the Hermite
basis is used, the RTC_BUFFER_TYPE_NORMAL and RTC_BUFFER_TYPE_NORMAL_
DERIVATIVE buffers have both to be set.

87

The curve is rendered as a flat band whose center approximately follows the
provided vertex spline, whose half width approximately follows the provided
radius spline, and whose normal orientation approximately follows the provided
normal spline.

To intersect the normal oriented curve, we perform a newton-raphson style
intersection of a ray with a tensor product surface of a linear basis (perpendicular
to the curve) and cubic Bézier basis (along the curve). We use a guide curve and
its derivatives to construct the control points of that surface. The guide curve
is defined by a sweep surface defined by sweeping a line centered at the vertex
spline location along the curve. At each parameter value the half width of the
line matches the radius spline, and the direction matches the cross product of
the normal from the normal spline and tangent of the vertex spline. Note that
this construction does not work when the provided normals are parallel to the
curve direction. For this reason the provided normals should best be kept as
perpendicular to the curve direction as possible.

In the RTC_GEOMETRY_TYPE_ROUND_* round mode, a real geometric surface is
rendered for the curve, which is more expensive but allows closeup views. This
mode renders a sweep surface by sweeping a varying radius circle tangential
along the curve. As a limitation, the radius of the curve has to be smaller than
the curvature radius of the curve at each location on the curve. The round mode
is currently not supported for the linear basis.

The intersection with the curve segment stores the parametric hit location
along the curve segment as u-coordinate (range 0 to +1).

For flat curves, the v-coordinate is set to the normalized distance in the
range -1 to +1. For normal oriented curves the v-coordinate is in the range 0
to 1. For the linear basis and in round mode the v-coordinate is set to zero.

In flat mode, the geometry normal Ng is set to the tangent of the curve at
the hit location. In round mode and for normal oriented curves, the geometry
normal Ng is set to the non-normalized geometric normal of the surface.

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount call. Then a vertex buffer for
each time step can be set using different buffer slots, and all these buffers must
have the same stride and size. For the Hermite basis also a tangent buffer has
to be set for each time step and for normal oriented curves a normal buffer has
to get specified for each time step.

Also see tutorials Hair and Curves for examples of how to create and use
curve geometries.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO

rtcNewGeometry

88

7.29 RTC_GEOMETRY_TYPE_POINT
NAME

RTC_GEOMETRY_TYPE_SPHERE_POINT -
point geometry spheres

RTC_GEOMETRY_TYPE_DISC_POINT -
point geometry with ray-oriented discs

RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT -
point geometry with normal-oriented discs

SYNOPSIS

#include <embree3/rtcore.h>

rtcNewGeometry(device, RTC_GEOMETRY_TYPE_SPHERE_POINT);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_DISC_POINT);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT);

DESCRIPTION

Points with per vertex radii are supported with sphere, ray-oriented discs, and
normal-oriented discs geometric representations. Such point geometries are
created by passing RTC_GEOMETRY_TYPE_SPHERE_POINT, RTC_GEOMETRY_TYPE_
DISC_POINT, or RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT to the rtcNew-
Geometry function. The point vertices can be specified t through a vertex
buffer (RTC_BUFFER_TYPE_VERTEX). For the normal oriented discs a normal
buffer (RTC_BUFFER_TYPE_NORMAL) has to get specified additionally. See rtc-
SetGeometryBuffer and rtcSetSharedGeometryBuffer for more details on
how to set buffers.

The vertex buffer stores each control vertex in the form of a single precision
position and radius stored in (x, y, z, r) order in memory (RTC_FORMAT_FLOAT4
format). The number of vertices is inferred from the size of this buffer. Similarly,
the normal buffer stores a single precision normal per control vertex (x, y, z order
and RTC_FORMAT_FLOAT3 format).

In the RTC_GEOMETRY_TYPE_SPHERE_POINT mode, a real geometric surface is
rendered for the curve, which is more expensive but allows closeup views.

The RTC_GEOMETRY_TYPE_DISC_POINT flat mode is a fast mode designed to
render distant points. In this mode the point is rendered as a ray facing disc.

The RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT mode is a mode designed
as a midpoint geometrically between ray facing discs and spheres. In this mode
the point is rendered as a normal oriented disc.

For all point types, only the hit distance and geometry normal is returned
as hit information, u and v are set to zero.

89

For multi-segment motion blur, the number of time steps must be first spec-
ified using the rtcSetGeometryTimeStepCount call. Then a vertex buffer for
each time step can be set using different buffer slots, and all these buffers must
have the same stride and size.

Also see tutorial [Points] for an example of how to create and use point
geometries.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO

rtcNewGeometry

90

7.30 RTC_GEOMETRY_TYPE_USER
NAME

RTC_GEOMETRY_TYPE_USER - user geometry type

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_USER);

DESCRIPTION

User-defined geometries contain a number of user-defined primitives, just like
triangle meshes contain multiple triangles. The shape of the user-defined prim-
itives is specified through registered callback functions, which enable extending
Embree with arbitrary types of primitives.

User-defined geometries are created by passing RTC_GEOMETRY_TYPE_USER to
the rtcNewGeometry function call. One has to set the number of primitives (see
rtcSetGeometryUserPrimitiveCount), a user data pointer (see rtcSetGeome-
tryUserData), a bounding function closure (see rtcSetGeometryBoundsFunc-
tion), as well as user-defined intersect (see rtcSetGeometryIntersectFunc-
tion) and occluded (see rtcSetGeometryOccludedFunction) callback func-
tions. The bounding function is used to query the bounds of all time steps of
a user primitive, while the intersect and occluded callback functions are called
to intersect the primitive with a ray. The user data pointer is passed to each
callback invocation and can be used to point to the application’s representation
of the user geometry.

The creation of a user geometry typically looks the following:

RTCGeometry geometry = rtcNewGeometry(device, RTC_GEOMETRY_TYPE_USER);
rtcSetGeometryUserPrimitiveCount(geometry, numPrimitives);
rtcSetGeometryUserData(geometry, userGeometryRepresentation);
rtcSetGeometryBoundsFunction(geometry, boundsFunction);
rtcSetGeometryIntersectFunction(geometry, intersectFunction);
rtcSetGeometryOccludedFunction(geometry, occludedFunction);

Please have a look at the rtcSetGeometryBoundsFunction, rtcSetGeome-
tryIntersectFunction, and rtcSetGeometryOccludedFunction functions on
the implementation of the callback functions.

See tutorial User Geometry for an example of how to use the user-defined
geometries.

91

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcSetGeometryUserPrimitiveCount, rtcSetGeometryUser-
Data, rtcSetGeometryBoundsFunction, rtcSetGeometryIntersectFunction, rtc-
SetGeometryOccludedFunction

92

7.31 RTC_GEOMETRY_TYPE_INSTANCE
NAME

RTC_GEOMETRY_TYPE_INSTANCE - instance geometry type

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_INSTANCE);

DESCRIPTION

Embree supports instancing of scenes using affine transformations (3×3 matrix
plus translation). As the instanced scene is stored only a single time, even if
instanced to multiple locations, this feature can be used to create very complex
scenes with small memory footprint.

Embree supports both single-level instancing and multi-level instancing. The
maximum instance nesting depth is RTC_MAX_INSTANCE_LEVEL_COUNT; it can be
configured at compile-time using the constant EMBREE_MAX_INSTANCE_LEVEL_
COUNT. Users should adapt this constant to their needs: instances nested any
deeper are silently ignored in release mode, and cause assertions in debug mode.

Instances are created by passing RTC_GEOMETRY_TYPE_INSTANCE to the rtc-
NewGeometry function call. The instanced scene can be set using the rtcSet-
GeometryInstancedScene call, and the affine transformation can be set using
the rtcSetGeometryTransform function.

Please note that rtcCommitScene on the instanced scene should be called
first, followed by rtcCommitGeometry on the instance, followed by rtcCom-
mitScene for the top-level scene containing the instance.

If a ray hits the instance, the geomID and primID members of the hit are set
to the geometry ID and primitive ID of the hit primitive in the instanced scene,
and the instID member of the hit is set to the geometry ID of the instance in
the top-level scene.

The instancing scheme can also be implemented using user geometries. To
achieve this, the user geometry code should set the instID member of the inter-
section context to the geometry ID of the instance, then trace the transformed
ray, and finally set the instID field of the intersection context again to -1. The
instID field is copied automatically by each primitive intersector into the in-
stID field of the hit structure when the primitive is hit. See the User Geometry
tutorial for an example.

For multi-segment motion blur, the number of time steps must be first speci-
fied using the rtcSetGeometryTimeStepCount function. Then a transformation
for each time step can be specified using the rtcSetGeometryTransform func-
tion.

93

See tutorials Instanced Geometry and Multi Level Instancing for examples
of how to use instances.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcSetGeometryInstancedScene, rtcSetGeometryTransform

94

7.32 rtcRetainGeometry
NAME

rtcRetainGeometry - increments the geometry reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcRetainGeometry(RTCGeometry geometry);

DESCRIPTION

Geometry objects are reference counted. The rtcRetainGeometry function in-
crements the reference count of the passed geometry object (geometry argu-
ment). This function together with rtcReleaseGeometry allows to use the
internal reference counting in a C++ wrapper class to handle the ownership of
the object.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcReleaseGeometry

95

7.33 rtcReleaseGeometry
NAME

rtcReleaseGeometry - decrements the geometry reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcReleaseGeometry(RTCGeometry geometry);

DESCRIPTION

Geometry objects are reference counted. The rtcReleaseGeometry function
decrements the reference count of the passed geometry object (geometry argu-
ment). When the reference count falls to 0, the geometry gets destroyed.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcRetainGeometry

96

7.34 rtcCommitGeometry
NAME

rtcCommitGeometry - commits geometry changes

SYNOPSIS

#include <embree3/rtcore.h>

void rtcCommitGeometry(RTCGeometry geometry);

DESCRIPTION

The rtcCommitGeometry function is used to commit all geometry changes per-
formed to a geometry (geometry parameter). After a geometry gets modified,
this function must be called to properly update the internal state of the ge-
ometry to perform interpolations using rtcInterpolate or to commit a scene
containing the geometry using rtcCommitScene.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcInterpolate, rtcCommitScene

97

7.35 rtcEnableGeometry
NAME

rtcEnableGeometry - enables the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcEnableGeometry(RTCGeometry geometry);

DESCRIPTION

The rtcEnableGeometry function enables the specified geometry (geometry
argument). Only enabled geometries are rendered. Each geometry is enabled
by default at construction time.

After enabling a geometry, the scene containing that geometry must be com-
mitted using rtcCommitScene for the change to have effect.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcDisableGeometry, rtcCommitScene

98

7.36 rtcDisableGeometry
NAME

rtcDisableGeometry - disables the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcDisableGeometry(RTCGeometry geometry);

DESCRIPTION

The rtcDisableGeometry function disables the specified geometry (geometry
argument). A disabled geometry is not rendered. Each geometry is enabled by
default at construction time.

After disabling a geometry, the scene containing that geometry must be
committed using rtcCommitScene for the change to have effect.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcEnableGeometry, rtcCommitScene

99

7.37 rtcSetGeometryTimeStepCount
NAME

rtcSetGeometryTimeStepCount - sets the number of time steps of the
geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryTimeStepCount(
RTCGeometry geometry,
unsigned int timeStepCount

);

DESCRIPTION

The rtcSetGeometryTimeStepCount function sets the number of time steps for
multi-segment motion blur (timeStepCount parameter) of the specified geome-
try (geometry parameter).

For triangle meshes (RTC_GEOMETRY_TYPE_TRIANGLE), quad meshes (RTC_
GEOMETRY_TYPE_QUAD), curves (RTC_GEOMETRY_TYPE_CURVE), points (RTC_GE-
OMETRY_TYPE_POINT), and subdivision geometries (RTC_GEOMETRY_TYPE_SUB-
DIVISION), the number of time steps directly corresponds to the number of
vertex buffer slots available (RTC_BUFFER_TYPE_VERTEX buffer type). For these
geometries, one vertex buffer per time step must be specified when creating
multi-segment motion blur geometries.

For instance geometries (RTC_GEOMETRY_TYPE_INSTANCE), a transformation
must be specified for each time step (see rtcSetGeometryTransform).

For user geometries, the registered bounding callback function must provide
a bounding box per primitive and time step, and the intersection and occlusion
callback functions should properly intersect the motion-blurred geometry at the
ray time.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcSetGeometryTimeRange

100

7.38 rtcSetGeometryTimeRange
NAME

rtcSetGeometryTimeRange - sets the time range for a motion blur geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryTimeRange(
RTCGeometry geometry,
float startTime,
float endTime

);

DESCRIPTION

The rtcSetGeometryTimeRange function sets a time range which defines the
start (and end time) of the first (and last) time step of a motion blur geometry.
The time range is defined relative to the camera shutter interval [0,1] but it can
be arbitrary. Thus the startTime can be smaller, equal, or larger 0, indicating a
geometry whose animation definition start before, at, or after the camera shutter
opens. Similar the endTime can be smaller, equal, or larger than 1, indicating a
geometry whose animation definition ends after, at, or before the camera shutter
closes. The startTime has to be smaller or equal to the endTime.

The default time range when this function is not called is the entire camera
shutter [0,1]. For best performance at most one time segment of the piece wise
linear definition of the motion should fall outside the shutter window to the left
and to the right. Thus do not set the startTime or endTime too far outside the
[0,1] interval for best performance.

This time range feature will also allow geometries to appear and disappear
during the camera shutter time if the specified time range is a sub range of [0,1].

Please also have a look at the rtcSetGeometryTimeStepCount function to
see how to define the time steps for the specified time range.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryTimeStepCount

101

7.39 rtcSetGeometryVertexAttributeCount
NAME

rtcSetGeometryVertexAttributeCount - sets the number of vertex
attributes of the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryVertexAttributeCount(
RTCGeometry geometry,
unsigned int vertexAttributeCount

);

DESCRIPTION

The rtcSetGeometryVertexAttributeCount function sets the number of slots
(vertexAttributeCount parameter) for vertex attribute buffers (RTC_BUFFER_
TYPE_VERTEX_ATTRIBUTE) that can be used for the specified geometry (geome-
try parameter).

This function is supported only for triangle meshes (RTC_GEOMETRY_TYPE_
TRIANGLE), quad meshes (RTC_GEOMETRY_TYPE_QUAD), curves (RTC_GEOMETRY_
TYPE_CURVE), points (RTC_GEOMETRY_TYPE_POINT), and subdivision geometries
(RTC_GEOMETRY_TYPE_SUBDIVISION).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, [RTCBufferType]

102

7.40 rtcSetGeometryMask
NAME

rtcSetGeometryMask - sets the geometry mask

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryMask(
RTCGeometry geometry,
unsigned int mask

);

DESCRIPTION

The rtcSetGeometryMask function sets a 32-bit geometry mask (mask argu-
ment) for the specified geometry (geometry argument).

This geometry mask is used together with the ray mask stored inside the
mask field of the ray. The primitives of the geometry are hit by the ray only
if the bitwise and operation of the geometry mask with the ray mask is not 0.
This feature can be used to disable selected geometries for specifically tagged
rays, e.g. to disable shadow casting for certain geometries.

Ray masks are disabled in Embree by default at compile time, and can be
enabled through the EMBREE_RAY_MASK parameter in CMake. One can query
whether ray masks are enabled by querying the RTC_DEVICE_PROPERTY_RAY_
MASK_SUPPORTED device property using rtcGetDeviceProperty.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

RTCRay, rtcGetDeviceProperty

103

7.41 rtcSetGeometryBuildQuality
NAME

rtcSetGeometryBuildQuality - sets the build quality for the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryBuildQuality(
RTCGeometry geometry,
enum RTCBuildQuality quality

);

DESCRIPTION

The rtcSetGeometryBuildQuality function sets the build quality (quality
argument) for the specified geometry (geometry argument). The per-geometry
build quality is only a hint and may be ignored. Embree currently uses the per-
geometry build quality when the scene build quality is set to RTC_BUILD_QUAL-
ITY_LOW. In this mode a two-level acceleration structure is build, and geometries
build a separate acceleration structure using the geometry build quality. The
per-geometry build quality can be one of:

• RTC_BUILD_QUALITY_LOW: Creates lower quality data structures, e.g. for
dynamic scenes.

• RTC_BUILD_QUALITY_MEDIUM: Default build quality for most usages. Gives
a good compromise between build and render performance.

• RTC_BUILD_QUALITY_HIGH: Creates higher quality data structures for final-
frame rendering. Enables a spatial split builder for certain primitive types.

• RTC_BUILD_QUALITY_REFIT: Uses a BVH refitting approach when chang-
ing only the vertex buffer.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetSceneBuildQuality

104

7.42 rtcSetGeometryBuffer
NAME

rtcSetGeometryBuffer - assigns a view of a buffer to the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryBuffer(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot,
enum RTCFormat format,
RTCBuffer buffer,
size_t byteOffset,
size_t byteStride,
size_t itemCount

);

DESCRIPTION

The rtcSetGeometryBuffer function binds a view of a buffer object (buffer
argument) to a geometry buffer type and slot (type and slot argument) of the
specified geometry (geometry argument).

One can specify the start of the first buffer element in bytes (byteOffset
argument), the byte stride between individual buffer elements (byteStride ar-
gument), the format of the buffer elements (format argument), and the number
of elements to bind (itemCount).

The start address (byteOffset argument) and stride (byteStride argu-
ment) must be both aligned to 4 bytes, otherwise the rtcSetGeometryBuffer
function will fail.

After successful completion of this function, the geometry will hold a refer-
ence to the buffer object.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetSharedGeometryBuffer, rtcSetNewGeometryBuffer

105

7.43 rtcSetSharedGeometryBuffer
NAME

rtcSetSharedGeometryBuffer - assigns a view of a shared data buffer
to a geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetSharedGeometryBuffer(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot,
enum RTCFormat format,
const void* ptr,
size_t byteOffset,
size_t byteStride,
size_t itemCount

);

DESCRIPTION

The rtcSetSharedGeometryBuffer function binds a view of a shared user-
managed data buffer (ptr argument) to a geometry buffer type and slot (type
and slot argument) of the specified geometry (geometry argument).

One can specify the start of the first buffer element in bytes (byteOffset
argument), the byte stride between individual buffer elements (byteStride ar-
gument), the format of the buffer elements (format argument), and the number
of elements to bind (itemCount).

The start address (byteOffset argument) and stride (byteStride argu-
ment) must be both aligned to 4 bytes; otherwise the rtcSetGeometryBuffer
function will fail.

When the buffer will be used as a vertex buffer (RTC_BUFFER_TYPE_VERTEX
and RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE), the last buffer element must be
readable using 16-byte SSE load instructions, thus padding the last element is
required for certain layouts. E.g. a standard float3 vertex buffer layout should
add storage for at least one more float to the end of the buffer.

The buffer data must remain valid for as long as the buffer may be used, and
the user is responsible for freeing the buffer data when no longer required.

Sharing buffers can significantly reduce the memory required by the appli-
cation, thus we recommend using this feature. When enabling the RTC_SCENE_
COMPACT scene flag, the spatial index structures index into the vertex buffer,
resulting in even higher memory savings.

106

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryBuffer, rtcSetNewGeometryBuffer

107

7.44 rtcSetNewGeometryBuffer
NAME

rtcSetNewGeometryBuffer - creates and assigns a new data buffer to
the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void* rtcSetNewGeometryBuffer(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot,
enum RTCFormat format,
size_t byteStride,
size_t itemCount

);

DESCRIPTION

The rtcSetNewGeometryBuffer function creates a new data buffer of specified
format (format argument), byte stride (byteStride argument), and number
of items (itemCount argument), and assigns it to a geometry buffer slot (type
and slot argument) of the specified geometry (geometry argument). The buffer
data is managed internally and automatically freed when the geometry is de-
stroyed.

The byte stride (byteStride argument) must be aligned to 4 bytes; other-
wise the rtcSetNewGeometryBuffer function will fail.

The allocated buffer will be automatically over-allocated slightly when used
as a vertex buffer, where a requirement is that each buffer element should be
readable using 16-byte SSE load instructions.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryBuffer, rtcSetSharedGeometryBuffer

108

7.45 rtcGetGeometryBufferData
NAME

rtcGetGeometryBufferData - gets pointer to
the first buffer view element

SYNOPSIS

#include <embree3/rtcore.h>

void* rtcGetGeometryBufferData(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot

);

DESCRIPTION

The rtcGetGeometryBufferData function returns a pointer to the first element
of the buffer view attached to the specified buffer type and slot (type and slot
argument) of the geometry (geometry argument).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryBuffer, rtcSetSharedGeometryBuffer, rtcSetNewGeometryBuffer

109

7.46 rtcUpdateGeometryBuffer
NAME

rtcUpdateGeometryBuffer - marks a buffer view bound to the geometry
as modified

SYNOPSIS

#include <embree3/rtcore.h>

void rtcUpdateGeometryBuffer(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot

);

DESCRIPTION

The rtcUpdateGeometryBuffer function marks the buffer view bound to the
specified buffer type and slot (type and slot argument) of a geometry (geom-
etry argument) as modified.

If a data buffer is changed by the application, the rtcUpdateGeometry-
Buffer call must be invoked for that buffer. Each buffer view assigned to a
buffer slot is initially marked as modified, thus this function needs to be called
only when doing buffer modifications after the first rtcCommitScene.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcCommitScene

110

7.47 rtcSetGeometryIntersectFilterFunction
NAME

rtcSetGeometryIntersectFilterFunction - sets the intersection filter
for the geometry

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCFilterFunctionNArguments
{
int* valid;
void* geometryUserPtr;
const struct RTCIntersectContext* context;
struct RTCRayN* ray;
struct RTCHitN* hit;
unsigned int N;

};

typedef void (*RTCFilterFunctionN)(
const struct RTCFilterFunctionNArguments* args

);

void rtcSetGeometryIntersectFilterFunction(
RTCGeometry geometry,
RTCFilterFunctionN filter

);

DESCRIPTION

The rtcSetGeometryIntersectFilterFunction function registers an intersec-
tion filter callback function (filter argument) for the specified geometry (ge-
ometry argument).

Only a single callback function can be registered per geometry, and further
invocations overwrite the previously set callback function. Passing NULL as
function pointer disables the registered callback function.

The registered intersection filter function is invoked for every hit encountered
during the rtcIntersect-type ray queries and can accept or reject that hit. The
feature can be used to define a silhouette for a primitive and reject hits that are
outside the silhouette. E.g. a tree leaf could be modeled with an alpha texture
that decides whether hit points lie inside or outside the leaf.

If the RTC_BUILD_QUALITY_HIGH mode is set, the filter functions may be
called multiple times for the same primitive hit. Further, rays hitting exactly
the edge might also report two hits for the same surface. For certain use cases,

111

the application may have to work around this limitation by collecting already
reported hits (geomID/primID pairs) and ignoring duplicates.

The filter function callback of type RTCFilterFunctionN gets passed a num-
ber of arguments through the RTCFilterFunctionNArguments structure. The
valid parameter of that structure points to an integer valid mask (0 means
invalid and -1 means valid). The geometryUserPtr member is a user pointer
optionally set per geometry through the rtcSetGeometryUserData function.
The context member points to the intersection context passed to the ray query
function. The ray parameter points to N rays in SOA layout. The hit param-
eter points to N hits in SOA layout to test. The N parameter is the number of
rays and hits in ray and hit. The hit distance is provided as the tfar value
of the ray. If the hit geometry is instanced, the instID member of the ray is
valid, and the ray and the potential hit are in object space.

The filter callback function has the task to check for each valid ray whether it
wants to accept or reject the corresponding hit. To reject a hit, the filter callback
function just has to write 0 to the integer valid mask of the corresponding ray.
To accept the hit, it just has to leave the valid mask set to -1. The filter function
is further allowed to change the hit and decrease the tfar value of the ray but
it should not modify other ray data nor any inactive components of the ray or
hit.

When performing ray queries using rtcIntersect1, it is guaranteed that
the packet size is 1 when the callback is invoked. When performing ray queries
using the rtcIntersect4/8/16 functions, it is not generally guaranteed that
the ray packet size (and order of rays inside the packet) passed to the call-
back matches the initial ray packet. However, under some circumstances these
properties are guaranteed, and whether this is the case can be queried using
rtcGetDeviceProperty. When performing ray queries using the stream API
such as rtcIntersect1M, rtcIntersect1Mp, rtcIntersectNM, or rtcInter-
sectNp the order of rays and ray packet size of the callback function might
change to either 1, 4, 8, or 16.

For many usage scenarios, repacking and re-ordering of rays does not cause
difficulties in implementing the callback function. However, algorithms that
need to extend the ray with additional data must use the rayID component of
the ray to identify the original ray to access the per-ray data.

The implementation of the filter function can choose to implement a single
code path that uses the ray access helper functions RTCRay_XXX and hit access
helper functions RTCHit_XXX to access ray and hit data. Alternatively the code
can branch to optimized implementations for specific sizes of N and cast the ray
and hit inputs to the proper packet types.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

112

SEE ALSO

rtcSetGeometryOccludedFilterFunction

113

7.48 rtcSetGeometryOccludedFilterFunction
NAME

rtcSetGeometryOccludedFilterFunction - sets the occlusion filter
for the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryOccludedFilterFunction(
RTCGeometry geometry,
RTCFilterFunctionN filter

);

DESCRIPTION

The rtcSetGeometryOccludedFilterFunction function registers an occlusion
filter callback function (filter argument) for the specified geometry (geometry
argument).

Only a single callback function can be registered per geometry, and further
invocations overwrite the previously set callback function. Passing NULL as
function pointer disables the registered callback function.

The registered intersection filter function is invoked for every hit encountered
during the rtcOccluded-type ray queries and can accept or reject that hit. The
feature can be used to define a silhouette for a primitive and reject hits that are
outside the silhouette. E.g. a tree leaf could be modeled with an alpha texture
that decides whether hit points lie inside or outside the leaf.

Please see the description of the rtcSetGeometryIntersectFilterFunc-
tion for a description of the filter callback function.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryIntersectFilterFunction

114

7.49 rtcFilterIntersection
NAME

rtcFilterIntersection - invokes the intersection filter function

SYNOPSIS

#include <embree3/rtcore.h>

void rtcFilterIntersection(
const struct RTCIntersectFunctionNArguments* args,
const struct RTCFilterFunctionNArguments* filterArgs

);

DESCRIPTION

The rtcFilterIntersection function can be called inside an RTCIntersect-
FunctionN callback function to invoke the intersection filter registered to the
geometry and stored inside the context. For this an RTCFilterFunctionNArgu-
ments structure must be created (see rtcSetGeometryIntersectFilterFunc-
tion) which basically consists of a valid mask, a hit packet to filter, the corre-
sponding ray packet, and the packet size. After the invocation of rtcFilterIn-
tersection, only rays that are still valid (valid mask set to -1) should update
a hit.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO

rtcFilterOcclusion, rtcSetGeometryIntersectFunction

115

7.50 rtcFilterOcclusion
NAME

rtcFilterOcclusion - invokes the occlusion filter function

SYNOPSIS

#include <embree3/rtcore.h>

void rtcFilterOcclusion(
const struct RTCOccludedFunctionNArguments* args,
const struct RTCFilterFunctionNArguments* filterArgs

);

DESCRIPTION

The rtcFilterOcclusion function can be called inside an RTCOccludedFunc-
tionN callback function to invoke the occlusion filter registered to the geom-
etry and stored inside the context. For this an RTCFilterFunctionNArgu-
ments structure must be created (see rtcSetGeometryIntersectFilterFunc-
tion) which basically consists of a valid mask, a hit packet to filter, the corre-
sponding ray packet, and the packet size. After the invocation of rtcFilte-
rOcclusion only rays that are still valid (valid mask set to -1) should signal an
occlusion.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO

rtcFilterIntersection, rtcSetGeometryOccludedFunction

116

7.51 rtcSetGeometryUserData
NAME

rtcSetGeometryUserData - sets the user-defined data pointer of the
geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryUserData(RTCGeometry geometry, void* userPtr);

DESCRIPTION

The rtcSetGeometryUserData function sets the user-defined data pointer
(userPtr argument) for a geometry (geometry argument). This user data
pointer is intended to be pointing to the application’s representation of the
geometry, and is passed to various callback functions. The application can use
this pointer inside the callback functions to access its geometry representation.

The rtcGetGeometryUserData function can be used to query an already set
user data pointer of a geometry.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetGeometryUserData

117

7.52 rtcGetGeometryUserData
NAME

rtcGetGeometryUserData - returns the user data pointer
of the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void* rtcGetGeometryUserData(RTCGeometry geometry);

DESCRIPTION

The rtcGetGeometryUserData function queries the user data pointer previously
set with rtcSetGeometryUserData. When rtcSetGeometryUserData was not
called yet, NULL is returned.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryUserData

118

7.53 rtcSetGeometryUserPrimitiveCount
NAME

rtcSetGeometryUserPrimitiveCount - sets the number of primitives
of a user-defined geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryUserPrimitiveCount(
RTCGeometry geometry,
unsigned int userPrimitiveCount

);

DESCRIPTION

The rtcSetGeometryUserPrimitiveCount function sets the number of user-
defined primitives (userPrimitiveCount parameter) of the specified user-defined
geometry (geometry parameter).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

RTC_GEOMETRY_TYPE_USER

119

7.54 rtcSetGeometryBoundsFunction
NAME

rtcSetGeometryBoundsFunction - sets a callback to query the
bounding box of user-defined primitives

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCBoundsFunctionArguments
{
void* geometryUserPtr;
unsigned int primID;
unsigned int timeStep;
struct RTCBounds* bounds_o;

};

typedef void (*RTCBoundsFunction)(
const struct RTCBoundsFunctionArguments* args

);

void rtcSetGeometryBoundsFunction(
RTCGeometry geometry,
RTCBoundsFunction bounds,
void* userPtr

);

DESCRIPTION

The rtcSetGeometryBoundsFunction function registers a bounding box call-
back function (bounds argument) with payload (userPtr argument) for the
specified user geometry (geometry argument).

Only a single callback function can be registered per geometry, and further
invocations overwrite the previously set callback function. Passing NULL as
function pointer disables the registered callback function.

The registered bounding box callback function is invoked to calculate axis-
aligned bounding boxes of the primitives of the user-defined geometry dur-
ing spatial acceleration structure construction. The bounding box callback
of RTCBoundsFunction type is invoked with a pointer to a structure of type
RTCBoundsFunctionArguments which contains various arguments, such as: the
user data of the geometry (geometryUserPtr member), the ID of the primi-
tive to calculate the bounds for (primID member), the time step at which to
calculate the bounds (timeStep member), and a memory location to write the
calculated bound to (bounds_o member).

120

In a typical usage scenario one would store a pointer to the internal rep-
resentation of the user geometry object using rtcSetGeometryUserData. The
callback function can then read that pointer from the geometryUserPtr field
and calculate the proper bounding box for the requested primitive and time,
and store that bounding box to the destination structure (bounds_o member).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

RTC_GEOMETRY_TYPE_USER

121

7.55 rtcSetGeometryIntersectFunction
NAME

rtcSetGeometryIntersectFunction - sets the callback function to
intersect a user geometry

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCIntersectFunctionNArguments
{
int* valid;
void* geometryUserPtr;
unsigned int primID;
struct RTCIntersectContext* context;
struct RTCRayHitN* rayhit;
unsigned int N;

};

typedef void (*RTCIntersectFunctionN)(
const struct RTCIntersectFunctionNArguments* args

);

void rtcSetGeometryIntersectFunction(
RTCGeometry geometry,
RTCIntersectFunctionN intersect

);

DESCRIPTION

The rtcSetGeometryIntersectFunction function registers a ray/primitive in-
tersection callback function (intersect argument) for the specified user geom-
etry (geometry argument).

Only a single callback function can be registered per geometry and further
invocations overwrite the previously set callback function. Passing NULL as
function pointer disables the registered callback function.

The registered callback function is invoked by rtcIntersect-type ray queries
to calculate the intersection of a ray packet of variable size with one user-defined
primitive. The callback function of type RTCIntersectFunctionN gets passed
a number of arguments through the RTCIntersectFunctionNArguments struc-
ture. The value N specifies the ray packet size, valid points to an array of
integers that specify whether the corresponding ray is valid (-1) or invalid (0),
the geometryUserPtr member points to the geometry user data previously set
through rtcSetGeometryUserData, the context member points to the inter-
section context passed to the ray query, the rayhit member points to a ray and

122

hit packet of variable size N, and the primID member identifies the primitive ID
of the primitive to intersect.

The ray component of the rayhit structure contains valid data, in particular
the tfar value is the current closest hit distance found. All data inside the hit
component of the rayhit structure are undefined and should not be read by the
function.

The task of the callback function is to intersect each active ray from the ray
packet with the specified user primitive. If the user-defined primitive is missed
by a ray of the ray packet, the function should return without modifying the ray
or hit. If an intersection of the user-defined primitive with the ray was found in
the valid range (from tnear to tfar), it should update the hit distance of the
ray (tfar member) and the hit (u, v, Ng, instID, geomID, primID members).
In particular, the currently intersected instance is stored in the instID field of
the intersection context, which must be deep copied into the instID member of
the hit.

As a primitive might have multiple intersections with a ray, the intersection
filter function needs to be invoked by the user geometry intersection callback for
each encountered intersection, if filtering of intersections is desired. This can be
achieved through the rtcFilterIntersection call.

Within the user geometry intersect function, it is safe to trace new rays and
create new scenes and geometries.

When performing ray queries using rtcIntersect1, it is guaranteed that
the packet size is 1 when the callback is invoked. When performing ray queries
using the rtcIntersect4/8/16 functions, it is not generally guaranteed that
the ray packet size (and order of rays inside the packet) passed to the call-
back matches the initial ray packet. However, under some circumstances these
properties are guaranteed, and whether this is the case can be queried using
rtcGetDeviceProperty. When performing ray queries using the stream API
such as rtcIntersect1M, rtcIntersect1Mp, rtcIntersectNM, or rtcInter-
sectNp the order of rays and ray packet size of the callback function might
change to either 1, 4, 8, or 16.

For many usage scenarios, repacking and re-ordering of rays does not cause
difficulties in implementing the callback function. However, algorithms that
need to extend the ray with additional data must use the rayID component of
the ray to identify the original ray to access the per-ray data.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryOccludedFunction, rtcSetGeometryUserData, rtcFilterIntersec-
tion

123

7.56 rtcSetGeometryOccludedFunction
NAME

rtcSetGeometryOccludedFunction - sets the callback function to
test a user geometry for occlusion

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCOccludedFunctionNArguments
{
int* valid;
void* geometryUserPtr;
unsigned int primID;
struct RTCIntersectContext* context;
struct RTCRayN* ray;
unsigned int N;

};

typedef void (*RTCOccludedFunctionN)(
const struct RTCOccludedFunctionNArguments* args

);

void rtcSetGeometryOccludedFunction(
RTCGeometry geometry,
RTCOccludedFunctionN filter

);

DESCRIPTION

The rtcSetGeometryOccludedFunction function registers a ray/primitive oc-
clusion callback function (filter argument) for the specified user geometry
(geometry argument).

Only a single callback function can be registered per geometry, and further
invocations overwrite the previously set callback function. Passing NULL as
function pointer disables the registered callback function.

The registered callback function is invoked by rtcOccluded-type ray queries
to test whether the rays of a packet of variable size are occluded by a user-
defined primitive. The callback function of type RTCOccludedFunctionN gets
passed a number of arguments through the RTCOccludedFunctionNArguments
structure. The value N specifies the ray packet size, valid points to an array of
integers which specify whether the corresponding ray is valid (-1) or invalid (0),
the geometryUserPtr member points to the geometry user data previously set
through rtcSetGeometryUserData, the context member points to the inter-
section context passed to the ray query, the ray member points to a ray packet

124

of variable size N, and the primID member identifies the primitive ID of the
primitive to test for occlusion.

The task of the callback function is to intersect each active ray from the ray
packet with the specified user primitive. If the user-defined primitive is missed
by a ray of the ray packet, the function should return without modifying the
ray. If an intersection of the user-defined primitive with the ray was found in
the valid range (from tnear to tfar), it should set the tfar member of the ray
to -inf.

As a primitive might have multiple intersections with a ray, the occlusion
filter function needs to be invoked by the user geometry occlusion callback for
each encountered intersection, if filtering of intersections is desired. This can be
achieved through the rtcFilterOcclusion call.

Within the user geometry occlusion function, it is safe to trace new rays and
create new scenes and geometries.

When performing ray queries using rtcOccluded1, it is guaranteed that the
packet size is 1 when the callback is invoked. When performing ray queries
using the rtcOccluded4/8/16 functions, it is not generally guaranteed that
the ray packet size (and order of rays inside the packet) passed to the call-
back matches the initial ray packet. However, under some circumstances these
properties are guaranteed, and whether this is the case can be queried using
rtcGetDeviceProperty. When performing ray queries using the stream API
such as rtcOccluded1M, rtcOccluded1Mp, rtcOccludedNM, or rtcOccludedNp
the order of rays and ray packet size of the callback function might change to
either 1, 4, 8, or 16.

For many usage scenarios, repacking and re-ordering of rays does not cause
difficulties in implementing the callback function. However, algorithms that
need to extend the ray with additional data must use the rayID component of
the ray to identify the original ray to access the per-ray data.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryIntersectFunction, rtcSetGeometryUserData, rtcFilterOcclusion

125

7.57 rtcSetGeometryPointQueryFunction
NAME

rtcSetGeometryPointQueryFunction - sets the point query callback function
for a geometry

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCPointQueryFunctionArguments
{

// the (world space) query object that was passed as an argument of rtcPointQuery.
struct RTCPointQuery* query;

// used for user input/output data. Will not be read or modified internally.
void* userPtr;

// primitive and geometry ID of primitive
unsigned int primID;
unsigned int geomID;

// the context with transformation and instance ID stack
struct RTCPointQueryContext* context;

// scaling factor indicating whether the current instance transformation
// is a similarity transformation.
float similarityScale;

};

typedef bool (*RTCPointQueryFunction)(
struct RTCPointQueryFunctionArguments* args

);

void rtcSetGeometryPointQueryFunction(
RTCGeometry geometry,
RTCPointQueryFunction queryFunc

);

DESCRIPTION

The rtcSetGeometryPointQueryFunction function registers a point query call-
back function (queryFunc argument) for the specified geometry (geometry ar-
gument).

Only a single callback function can be registered per geometry and further
invocations overwrite the previously set callback function. Passing NULL as

126

function pointer disables the registered callback function.
The registered callback function is invoked by [rtcPointQuery] for every prim-

itive of the geometry that intersects the corresponding point query domain. The
callback function of type RTCPointQueryFunction gets passed a number of ar-
guments through the RTCPointQueryFunctionArguments structure. The query
object is the original point query object passed into [rtcPointQuery], usrPtr is
an arbitrary pointer to pass input into and store results of the callback function.
The primID, geomID and context (see rtcInitPointQueryContext for details)
can be used to identify the geometry data of the primitive.

A RTCPointQueryFunction can also be passed directly as an argument to
[rtcPointQuery]. In this case the callback is invoked for all primitives in the scene
that intersect the query domain. If a callback function is passed as an argument
to [rtcPointQuery] and (a potentially different) callback function is set for a
geometry with rtcSetGeometryPointQueryFunction both callback functions are
invoked and the callback function passed to [rtcPointQuery] will be called before
the geometry specific callback function.

If instancing is used, the parameter simliarityScale indicates whether the
current instance transform (top element of the stack in context) is a similarity
transformation or not. Similarity transformations are composed of translation,
rotation and uniform scaling and if a matrix M defines a similarity transfor-
mation, there is a scaling factor D such that for all x,y: dist(Mx, My) = D *
dist(x, y). In this case the parameter scalingFactor is this scaling factor D
and otherwise it is 0. A valid similarity scale (similarityScale > 0) allows
to compute distance information in instance space and scale the distances into
world space (for example, to update the query radius, see below) by dividing
the instance space distance with the similarity scale. If the current instance
transform is not a similarity transform (similarityScale is 0), the distance
computation has to be performed in world space to ensure correctness. In this
case the instance to world transformations given with the context should be
used to transform the primitive data into world space. Otherwise, the query
location can be transformed into instance space which can be more efficient. If
there is no instance transform, the similarity scale is 1.

The callback function will potentially be called for primitives outside the
query domain for two resons: First, the callback is invoked for all primitives
inside a BVH leaf node since no geometry data of primitives is determined
internally and therefore individual primitives are not culled (only their (aggre-
gated) bounding boxes). Second, in case non similarity transformations are
used, the resulting ellipsoidal query domain (in instance space) is approximated
by its axis aligned bounding box internally and therefore inner nodes that do
not intersect the original domain might intersect the approximative bounding
box which results in unneccessary callbacks. In any case, the callbacks are con-
servative, i.e. if a primitive is inside the query domain a callback will be invoked
but the reverse is not neccessarily true.

For efficiency, the radius of the query object can be decreased (in world
space) inside the callback function to improve culling of geometry during BVH
traversal. If the query radius was updated, the callback function should return

127

true to issue an update of internal traversal information. Increasing the radius
or modifying the time or position of the query results in undefined behaviour.

Within the callback function, it is safe to call [rtcPointQuery] again, for
example when implementing instancing manually. In this case the instance
transformation should be pushed onto the stack in context. Embree will in-
ternally compute the point query information in instance space using the top
element of the stack in context when [rtcPointQuery] is called.

For a reference implementation of a closest point traversal of triangle meshes
using instancing and user defined instancing see the tutorial [ClosestPoint].

SEE ALSO

[rtcPointQuery], rtcInitPointQueryContext

128

7.58 rtcSetGeometryInstancedScene
NAME

rtcSetGeometryInstancedScene - sets the instanced scene of
an instance geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryInstancedScene(
RTCGeometry geometry,
RTCScene scene

);

DESCRIPTION

The rtcSetGeometryInstancedScene function sets the instanced scene (scene
argument) of the specified instance geometry (geometry argument).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

RTC_GEOMETRY_TYPE_INSTANCE, rtcSetGeometryTransform

129

7.59 rtcSetGeometryTransform
NAME

rtcSetGeometryTransform - sets the transformation for a particular
time step of an instance geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryTransform(
RTCGeometry geometry,
unsigned int timeStep,
enum RTCFormat format,
const float* xfm

);

DESCRIPTION

The rtcSetGeometryTransform function sets the local-to-world affine transfor-
mation (xfm parameter) of an instance geometry (geometry parameter) for a
particular time step (timeStep parameter). The transformation is specified as a
3×4 matrix (3×3 linear transformation plus translation), for which the following
formats (format parameter) are supported:

• RTC_FORMAT_FLOAT3X4_ROW_MAJOR: The 3×4 float matrix is laid out in
row-major form.

• RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR: The 3×4 float matrix is laid out
in column-major form.

• RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR: The 3×4 float matrix is laid out
in column-major form as a 4×4 homogeneous matrix with the last row
being equal to (0, 0, 0, 1).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

RTC_GEOMETRY_TYPE_INSTANCE

130

7.60 rtcGetGeometryTransform
NAME

rtcGetGeometryTransform - returns the interpolated instance
transformation for the specified time

SYNOPSIS

#include <embree3/rtcore.h>

void rtcGetGeometryTransform(
RTCGeometry geometry,
float time,
enum RTCFormat format,
void* xfm

);

DESCRIPTION

The rtcGetGeometryTransform function returns the interpolated local to world
transformation (xfm parameter) of an instance geometry (geometry parameter)
for a particular time (time parameter in range [0, 1]) in the specified format
(format parameter).

Possible formats for the returned matrix are:

• RTC_FORMAT_FLOAT3X4_ROW_MAJOR: The 3×4 float matrix is laid out in
row-major form.

• RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR: The 3×4 float matrix is laid out
in column-major form.

• RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR: The 3×4 float matrix is laid out
in column-major form as a 4×4 homogeneous matrix with last row equal
to (0, 0, 0, 1).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

RTC_GEOMETRY_TYPE_INSTANCE, rtcSetGeometryTransform

131

7.61 rtcSetGeometryTessellationRate
NAME

rtcSetGeometryTessellationRate - sets the tessellation rate of the
geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryTessellationRate(
RTCGeometry geometry,
float tessellationRate

);

DESCRIPTION

The rtcSetGeometryTessellationRate function sets the tessellation rate (tes-
sellationRate argument) for the specified geometry (geometry argument).
The tessellation rate can only be set for flat curves and subdivision geome-
tries. For curves, the tessellation rate specifies the number of ray-facing quads
per curve segment. For subdivision surfaces, the tessellation rate specifies the
number of quads along each edge.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

RTC_GEOMETRY_TYPE_CURVE, RTC_GEOMETRY_TYPE_SUBDIVISION

132

7.62 rtcSetGeometryTopologyCount
NAME

rtcSetGeometryTopologyCount - sets the number of topologies of
a subdivision geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryTopologyCount(
RTCGeometry geometry,
unsigned int topologyCount

);

DESCRIPTION

The rtcSetGeometryTopologyCount function sets the number of topologies
(topologyCount parameter) for the specified subdivision geometry (geometry
parameter). The number of topologies of a subdivision geometry must be greater
or equal to 1.

To use multiple topologies, first the number of topologies must be specified,
then the individual topologies can be configured using rtcSetGeometrySubdi-
visionMode and by setting an index buffer (RTC_BUFFER_TYPE_INDEX) using
the topology ID as the buffer slot.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

RTC_GEOMETRY_TYPE_SUBDIVISION, rtcSetGeometrySubdivisionMode

133

7.63 rtcSetGeometrySubdivisionMode
NAME

rtcSetGeometrySubdivisionMode - sets the subdivision mode
of a subdivision geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometrySubdivisionMode(
RTCGeometry geometry,
unsigned int topologyID,
enum RTCSubdivisionMode mode

);

DESCRIPTION

The rtcSetGeometrySubdivisionMode function sets the subdivision mode
(mode parameter) for the topology (topologyID parameter) of the specified
subdivision geometry (geometry parameter).

The subdivision modes can be used to force linear interpolation for certain
parts of the subdivision mesh:

• RTC_SUBDIVISION_MODE_NO_BOUNDARY: Boundary patches are ignored.
This way each rendered patch has a full set of control vertices.

• RTC_SUBDIVISION_MODE_SMOOTH_BOUNDARY: The sequence of boundary
control points are used to generate a smooth B-spline boundary curve
(default mode).

• RTC_SUBDIVISION_MODE_PIN_CORNERS: Corner vertices are pinned to their
location during subdivision.

• RTC_SUBDIVISION_MODE_PIN_BOUNDARY: All vertices at the border are
pinned to their location during subdivision. This way the boundary is
interpolated linearly. This mode is typically used for texturing to also
map texels at the border of the texture to the mesh.

• RTC_SUBDIVISION_MODE_PIN_ALL: All vertices at the border are pinned
to their location during subdivision. This way all patches are linearly
interpolated.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

134

SEE ALSO

RTC_GEOMETRY_TYPE_SUBDIVISION

135

7.64 rtcSetGeometryVertexAttributeTopology
NAME

rtcSetGeometryVertexAttributeTopology - binds a vertex
attribute to a topology of the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryVertexAttributeTopology(
RTCGeometry geometry,
unsigned int vertexAttributeID,
unsigned int topologyID

);

DESCRIPTION

The rtcSetGeometryVertexAttributeTopology function binds a vertex at-
tribute buffer slot (vertexAttributeID argument) to a topology (topologyID
argument) for the specified subdivision geometry (geometry argument). Stan-
dard vertex buffers are always bound to the default topology (topology 0) and
cannot be bound differently. A vertex attribute buffer always uses the topology
it is bound to when used in the rtcInterpolate and rtcInterpolateN calls.

A topology with ID i consists of a subdivision mode set through rtcSetGe-
ometrySubdivisionMode and the index buffer bound to the index buffer slot i.
This index buffer can assign indices for each face of the subdivision geometry
that are different to the indices of the default topology. These new indices can
for example be used to introduce additional borders into the subdivision mesh
to map multiple textures onto one subdivision geometry.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometrySubdivisionMode, rtcInterpolate, rtcInterpolateN

136

7.65 rtcSetGeometryDisplacementFunction
NAME

rtcSetGeometryDisplacementFunction - sets the displacement function
for a subdivision geometry

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCDisplacementFunctionNArguments
{
void* geometryUserPtr;
RTCGeometry geometry;
unsigned int primID;
unsigned int timeStep;
const float* u;
const float* v;
const float* Ng_x;
const float* Ng_y;
const float* Ng_z;
float* P_x;
float* P_y;
float* P_z;
unsigned int N;

};

typedef void (*RTCDisplacementFunctionN)(
const struct RTCDisplacementFunctionNArguments* args

);

void rtcSetGeometryDisplacementFunction(
RTCGeometry geometry,
RTCDisplacementFunctionN displacement

);

DESCRIPTION

The rtcSetGeometryDisplacementFunction function registers a displacement
callback function (displacement argument) for the specified subdivision geom-
etry (geometry argument).

Only a single callback function can be registered per geometry, and further
invocations overwrite the previously set callback function. Passing NULL as
function pointer disables the registered callback function.

The registered displacement callback function is invoked to displace points
on the subdivision geometry during spatial acceleration structure construction,

137

during the rtcCommitScene call.
The callback function of type RTCDisplacementFunctionN is invoked with a

number of arguments stored inside the RTCDisplacementFunctionNArguments
structure. The provided user data pointer of the geometry (geometryUserPtr
member) can be used to point to the application’s representation of the subdivi-
sion mesh. A number N of points to displace are specified in a structure of array
layout. For each point to displace, the local patch UV coordinates (u and v ar-
rays), the normalized geometry normal (Ng_x, Ng_y, and Ng_z arrays), and the
position (P_x, P_y, and P_z arrays) are provided. The task of the displacement
function is to use this information and change the position data.

The geometry handle (geometry member) and primitive ID (primID mem-
ber) of the patch to displace are additionally provided as well as the time step
timeStep, which can be important if the displacement is time-dependent and
motion blur is used.

All passed arrays must be aligned to 64 bytes and properly padded to make
wide vector processing inside the displacement function easily possible.

Also see tutorial Displacement Geometry for an example of how to use the
displacement mapping functions.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

RTC_GEOMETRY_TYPE_SUBDIVISION

138

e0

e1
e3

e2

f0

e4

e5
e7

e6

e8

e9
e11

e10

f2

e20

e23

e22

f5

e12

e15

e14

f3

e16

e19

e18

f4

f1

e13 e17 e21

Figure 7.3:

7.66 rtcGetGeometryFirstHalfEdge
NAME

rtcGetGeometryFirstHalfEdge - returns the first half edge of a face

SYNOPSIS

#include <embree3/rtcore.h>

unsigned int rtcGetGeometryFirstHalfEdge(
RTCGeometry geometry,
unsigned int faceID

);

DESCRIPTION

The rtcGetGeometryFirstHalfEdge function returns the ID of the first half
edge belonging to the specified face (faceID argument). For instance in the
following example the first half edge of face f1 is e4.

This function can only be used for subdivision geometries. As all topologies
of a subdivision geometry share the same face buffer the function does not
depend on the topology ID.

139

Here f0 to f7 are 8 quadrilateral faces with 4 vertices each. The edges e0
to e23 of these faces are shown with their orientation. For each face the ID of
the edges corresponds to the slots the face occupies in the index array of the
geometry. E.g. as the indices of face f1 start at location 4 of the index array,
the first edge is edge e4, the next edge e5, etc.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetGeometryFirstHalfEdge, rtcGetGeometryFace, rtcGetGeometryOppo-
siteHalfEdge, rtcGetGeometryNextHalfEdge, rtcGetGeometryPreviousHalfEdge

140

e0

e1
e3

e2

f0

e4

e5
e7

e6

e8

e9
e11

e10

f2

e20

e23

e22

f5

e12

e15

e14

f3

e16

e19

e18

f4

f1

e13 e17 e21

Figure 7.4:

7.67 rtcGetGeometryFace
NAME

rtcGetGeometryFace - returns the face of some half edge

SYNOPSIS

#include <embree3/rtcore.h>

unsigned int rtcGetGeometryFace(
RTCGeometry geometry,
unsigned int edgeID

);

DESCRIPTION

The rtcGetGeometryFace function returns the ID of the face the specified half
edge (edgeID argument) belongs to. For instance in the following example the
face f1 is returned for edges e4, e5, e6, and e7.

This function can only be used for subdivision geometries. As all topologies
of a subdivision geometry share the same face buffer the function does not
depend on the topology ID.

141

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetGeometryFirstHalfEdge, rtcGetGeometryFace, rtcGetGeometryOppo-
siteHalfEdge, rtcGetGeometryNextHalfEdge, rtcGetGeometryPreviousHalfEdge

142

e0

e1
e3

e2

f0

e4

e5
e7

e6

e8

e9
e11

e10

f2

e20

e23

e22

f5

e12

e15

e14

f3

e16

e19

e18

f4

f1

e13 e17 e21

Figure 7.5:

7.68 rtcGetGeometryNextHalfEdge
NAME

rtcGetGeometryNextHalfEdge - returns the next half edge

SYNOPSIS

#include <embree3/rtcore.h>

unsigned int rtcGetGeometryNextHalfEdge(
RTCGeometry geometry,
unsigned int edgeID

);

DESCRIPTION

The rtcGetGeometryNextHalfEdge function returns the ID of the next half
edge of the specified half edge (edgeID argument). For instance in the following
example the next half edge of e10 is e11.

This function can only be used for subdivision geometries. As all topologies
of a subdivision geometry share the same face buffer the function does not
depend on the topology ID.

143

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetGeometryFirstHalfEdge, rtcGetGeometryFace, rtcGetGeometryOppo-
siteHalfEdge, rtcGetGeometryNextHalfEdge, rtcGetGeometryPreviousHalfEdge

144

e0

e1
e3

e2

f0

e4

e5
e7

e6

e8

e9
e11

e10

f2

e20

e23

e22

f5

e12

e15

e14

f3

e16

e19

e18

f4

f1

e13 e17 e21

Figure 7.6:

7.69 rtcGetGeometryPreviousHalfEdge
NAME

rtcGetGeometryPreviousHalfEdge - returns the previous half edge

SYNOPSIS

#include <embree3/rtcore.h>

unsigned int rtcGetGeometryPreviousHalfEdge(
RTCGeometry geometry,
unsigned int edgeID

);

DESCRIPTION

The rtcGetGeometryPreviousHalfEdge function returns the ID of the previous
half edge of the specified half edge (edgeID argument). For instance in the
following example the previous half edge of e6 is e5.

This function can only be used for subdivision geometries. As all topologies
of a subdivision geometry share the same face buffer the function does not
depend on the topology ID.

145

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetGeometryFirstHalfEdge, rtcGetGeometryFace, rtcGetGeometryOppo-
siteHalfEdge, rtcGetGeometryNextHalfEdge, rtcGetGeometryPreviousHalfEdge

146

e0

e1
e3

e2

f0

e4

e5
e7

e6

e8

e9
e11

e10

f2

e20

e23

e22

f5

e12

e15

e14

f3

e16

e19

e18

f4

f1

e13 e17 e21

Figure 7.7:

7.70 rtcGetGeometryOppositeHalfEdge
NAME

rtcGetGeometryOppositeHalfEdge - returns the opposite half edge

SYNOPSIS

#include <embree3/rtcore.h>

unsigned int rtcGetGeometryOppositeHalfEdge(
RTCGeometry geometry,
unsigned int topologyID,
unsigned int edgeID

);

DESCRIPTION

The rtcGetGeometryOppositeHalfEdge function returns the ID of the opposite
half edge of the specified half edge (edgeID argument) in the specified topology
(topologyID argument). For instance in the following example the opposite half
edge of e6 is e16.

147

An opposite half edge does not exist if the specified half edge has either no
neighboring face, or more than 2 neighboring faces. In these cases the function
just returns the same edge edgeID again.

This function can only be used for subdivision geometries. The function de-
pends on the topology as the topologies of a subdivision geometry have different
index buffers assigned.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetGeometryFirstHalfEdge, rtcGetGeometryFace, rtcGetGeometryOppo-
siteHalfEdge, rtcGetGeometryNextHalfEdge, rtcGetGeometryPreviousHalfEdge

148

7.71 rtcInterpolate
NAME

rtcInterpolate - interpolates vertex attributes

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCInterpolateArguments
{
RTCGeometry geometry;
unsigned int primID;
float u;
float v;
enum RTCBufferType bufferType;
unsigned int bufferSlot;
float* P;
float* dPdu;
float* dPdv;
float* ddPdudu;
float* ddPdvdv;
float* ddPdudv;
unsigned int valueCount;

};

void rtcInterpolate(
const struct RTCInterpolateArguments* args

);

DESCRIPTION

The rtcInterpolate function smoothly interpolates per-vertex data over the
geometry. This interpolation is supported for triangle meshes, quad meshes,
curve geometries, and subdivision geometries. Apart from interpolating the ver-
tex attribute itself, it is also possible to get the first and second order derivatives
of that value. This interpolation ignores displacements of subdivision surfaces
and always interpolates the underlying base surface.

The rtcInterpolate call gets passed a number of arguments inside a struc-
ture of type RTCInterpolateArguments. For some geometry (geometry param-
eter) this function smoothly interpolates the per-vertex data stored inside the
specified geometry buffer (bufferType and bufferSlot parameters) to the u/v
location (u and v parameters) of the primitive (primID parameter). The number
of floating point values to interpolate and store to the destination arrays can
be specified using the valueCount parameter. As interpolation buffer, one can

149

specify vertex buffers (RTC_BUFFER_TYPE_VERTEX) and vertex attribute buffers
(RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) as well.

The rtcInterpolate call stores valueCount number of interpolated floating
point values to the memory location pointed to by P. One can avoid storing the
interpolated value by setting P to NULL.

The first order derivative of the interpolation by u and v are stored at the
dPdu and dPdv memory locations. One can avoid storing first order derivatives
by setting both dPdu and dPdv to NULL.

The second order derivatives are stored at the ddPdudu, ddPdvdv, and ddP-
dudv memory locations. One can avoid storing second order derivatives by
setting these three pointers to NULL.

To use rtcInterpolate for a geometry, all changes to that geometry must
be properly committed using rtcCommitGeometry.

All input buffers and output arrays must be padded to 16 bytes, as the im-
plementation uses 16-byte SSE instructions to read and write into these buffers.

See tutorial Interpolation for an example of using the rtcInterpolate func-
tion.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO

rtcInterpolateN

150

7.72 rtcInterpolateN
NAME

rtcInterpolateN - performs N interpolations of vertex attribute data

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCInterpolateNArguments
{
RTCGeometry geometry;
const void* valid;
const unsigned int* primIDs;
const float* u;
const float* v;
unsigned int N;
enum RTCBufferType bufferType;
unsigned int bufferSlot;
float* P;
float* dPdu;
float* dPdv;
float* ddPdudu;
float* ddPdvdv;
float* ddPdudv;
unsigned int valueCount;

};

void rtcInterpolateN(
const struct RTCInterpolateNArguments* args

);

DESCRIPTION

The rtcInterpolateN is similar to rtcInterpolate, but performs N many in-
terpolations at once. It additionally gets an array of u/v coordinates and a valid
mask (valid parameter) that specifies which of these coordinates are valid. The
valid mask points to N integers, and a value of -1 denotes valid and 0 invalid. If
the valid pointer is NULL all elements are considers valid. The destination arrays
are filled in structure of array (SOA) layout. The value N must be divisible by
4.

To use rtcInterpolateN for a geometry, all changes to that geometry must
be properly committed using rtcCommitGeometry.

151

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO

rtcInterpolate

152

7.73 rtcNewBuffer
NAME

rtcNewBuffer - creates a new data buffer

SYNOPSIS

#include <embree3/rtcore.h>

RTCBuffer rtcNewBuffer(
RTCDevice device,
size_t byteSize

);

DESCRIPTION

The rtcNewBuffer function creates a new data buffer object of specified size
in bytes (byteSize argument) that is bound to the specified device (device
argument). The buffer object is reference counted with an initial reference count
of 1. The returned buffer object can be released using the rtcReleaseBuffer
API call. The specified number of bytes are allocated at buffer construction
time and deallocated when the buffer is destroyed.

When the buffer will be used as a vertex buffer (RTC_BUFFER_TYPE_VERTEX
and RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE), the last buffer element must be
readable using 16-byte SSE load instructions, thus padding the last element is
required for certain layouts. E.g. a standard float3 vertex buffer layout should
add storage for at least one more float to the end of the buffer.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO

rtcRetainBuffer, rtcReleaseBuffer

153

7.74 rtcNewSharedBuffer
NAME

rtcNewSharedBuffer - creates a new shared data buffer

SYNOPSIS

#include <embree3/rtcore.h>

RTCBuffer rtcNewSharedBuffer(
RTCDevice device,
void* ptr,
size_t byteSize

);

DESCRIPTION

The rtcNewSharedBuffer function creates a new shared data buffer object
bound to the specified device (device argument). The buffer object is refer-
ence counted with an initial reference count of 1. The buffer can be released
using the rtcReleaseBuffer function.

At construction time, the pointer to the user-managed buffer data (ptr
argument) including its size in bytes (byteSize argument) is provided to create
the buffer. At buffer construction time no buffer data is allocated, but the buffer
data provided by the application is used. The buffer data must remain valid for
as long as the buffer may be used, and the user is responsible to free the buffer
data when no longer required.

When the buffer will be used as a vertex buffer (RTC_BUFFER_TYPE_VERTEX
and RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE), the last buffer element must be
readable using 16-byte SSE load instructions, thus padding the last element is
required for certain layouts. E.g. a standard float3 vertex buffer layout should
add storage for at least one more float to the end of the buffer.

The data pointer (ptr argument) must be aligned to 4 bytes; otherwise the
rtcNewSharedBuffer function will fail.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO

rtcRetainBuffer, rtcReleaseBuffer

154

7.75 rtcRetainBuffer
NAME

rtcRetainBuffer - increments the buffer reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcRetainBuffer(RTCBuffer buffer);

DESCRIPTION

Buffer objects are reference counted. The rtcRetainBuffer function increments
the reference count of the passed buffer object (buffer argument). This function
together with rtcReleaseBuffer allows to use the internal reference counting
in a C++ wrapper class to handle the ownership of the object.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewBuffer, rtcReleaseBuffer

155

7.76 rtcReleaseBuffer
NAME

rtcReleaseBuffer - decrements the buffer reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcReleaseBuffer(RTCBuffer buffer);

DESCRIPTION

Buffer objects are reference counted. The rtcReleaseBuffer function decre-
ments the reference count of the passed buffer object (buffer argument). When
the reference count falls to 0, the buffer gets destroyed.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewBuffer, rtcRetainBuffer

156

7.77 rtcGetBufferData
NAME

rtcGetBufferData - gets a pointer to the buffer data

SYNOPSIS

#include <embree3/rtcore.h>

void* rtcGetBufferData(RTCBuffer buffer);

DESCRIPTION

The rtcGetBufferData function returns a pointer to the buffer data of the
specified buffer object (buffer argument).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewBuffer

157

7.78 RTCRay
NAME

RTCRay - single ray structure

SYNOPSIS

#include <embree3/rtcore_ray.h>

struct RTC_ALIGN(16) RTCRay
{
float org_x; // x coordinate of ray origin
float org_y; // y coordinate of ray origin
float org_z; // z coordinate of ray origin
float tnear; // start of ray segment

float dir_x; // x coordinate of ray direction
float dir_y; // y coordinate of ray direction
float dir_z; // z coordinate of ray direction
float time; // time of this ray for motion blur

float tfar; // end of ray segment (set to hit distance)
unsigned int mask; // ray mask
unsigned int id; // ray ID
unsigned int flags; // ray flags

};

DESCRIPTION

The RTCRay structure defines the ray layout for a single ray. The ray contains the
origin (org_x, org_y, org_z members), direction vector (dir_x, dir_y, dir_
z members), and ray segment (tnear and tfar members). The ray direction
does not have to be normalized, and only the parameter range specified by the
tnear/tfar interval is considered valid.

The ray segment must be in the range [0,∞], thus ranges that start behind
the ray origin are not allowed, but ranges can reach to infinity. For rays inside
a ray stream, tfar < tnear identifies an inactive ray.

The ray further contains a motion blur time in the range [0, 1] (time mem-
ber), a ray mask (mask member), a ray ID (id member), and ray flags (flags
member). The ray mask can be used to mask out some geometries for some
rays (see rtcSetGeometryMask for more details). The ray ID can be used to
identify a ray inside a callback function, even if the order of rays inside a ray
packet or stream has changed. The ray flags are reserved.

The embree3/rtcore_ray.h header additionally defines the same ray struc-
ture in structure of array (SOA) layout for API functions accepting ray packets
of size 4 (RTCRay4 type), size 8 (RTCRay8 type), and size 16 (RTCRay16 type).

158

The header additionally defines an RTCRayNt template for ray packets of an
arbitrary compile-time size.

EXIT STATUS

SEE ALSO

RTCHit

159

7.79 RTCHit
NAME

RTCHit - single hit structure

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCHit
{
float Ng_x; // x coordinate of geometry normal
float Ng_y; // y coordinate of geometry normal
float Ng_z; // z coordinate of geometry normal

float u; // barycentric u coordinate of hit
float v; // barycentric v coordinate of hit

unsigned int primID; // geometry ID
unsigned int geomID; // primitive ID
unsigned int instID[RTC_MAX_INSTANCE_LEVEL_COUNT]; // instance ID

};

DESCRIPTION

The RTCHit type defines the type of a ray/primitive intersection result. The hit
contains the unnormalized geometric normal in object space at the hit location
(Ng_x, Ng_y, Ng_z members), the barycentric u/v coordinates of the hit (u and v
members), as well as the primitive ID (primID member), geometry ID (geomID
member), and instance ID stack (instID member) of the hit. The parametric
intersection distance is not stored inside the hit, but stored inside the tfar
member of the ray.

The embree3/rtcore_ray.h header additionally defines the same hit struc-
ture in structure of array (SOA) layout for hit packets of size 4 (RTCHit4 type),
size 8 (RTCHit8 type), and size 16 (RTCHit16 type). The header additionally
defines an RTCHitNt template for hit packets of an arbitrary compile-time size.

EXIT STATUS

SEE ALSO

RTCRay, [Multi-Level Instancing]

160

7.80 RTCRayHit
NAME

RTCRayHit - combined single ray/hit structure

SYNOPSIS

#include <embree3/rtcore_ray.h>

struct RTCORE_ALIGN(16) RTCRayHit
{

struct RTCRay ray;
struct RTCHit hit;

};

DESCRIPTION

The RTCRayHit structure is used as input for the rtcIntersect-type functions
and stores the ray to intersect and some hit fields that hold the intersection
result afterwards.

The embree3/rtcore_ray.h header additionally defines the same ray/hit
structure in structure of array (SOA) layout for API functions accepting ray
packets of size 4 (RTCRayHit4 type), size 8 (RTCRayHit8 type), and size 16
(RTCRayHit16 type). The header additionally defines an RTCRayHitNt template
to generate ray/hit packets of an arbitrary compile-time size.

EXIT STATUS

SEE ALSO

RTCRay, RTCHit

161

7.81 RTCRayN
NAME

RTCRayN - ray packet of runtime size

SYNOPSIS

#include <embree3/rtcore_ray.h>

struct RTCRayN;

float& RTCRayN_org_x(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_org_y(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_org_z(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_tnear(RTCRayN* ray, unsigned int N, unsigned int i);

float& RTCRayN_dir_x(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_dir_y(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_dir_z(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_time (RTCRayN* ray, unsigned int N, unsigned int i);

float& RTCRayN_tfar (RTCRayN* ray, unsigned int N, unsigned int i);
unsigned int& RTCRayN_mask (RTCRayN* ray, unsigned int N, unsigned int i);
unsigned int& RTCRayN_id (RTCRayN* ray, unsigned int N, unsigned int i);
unsigned int& RTCRayN_flags(RTCRayN* ray, unsigned int N, unsigned int i);

DESCRIPTION

When the ray packet size is not known at compile time (e.g. when Embree
returns a ray packet in the RTCFilterFuncN callback function), Embree uses
the RTCRayN type for ray packets. These ray packets can only have sizes of 1, 4,
8, or 16. No other packet size will be used.

You can either implement different special code paths for each of these possi-
ble packet sizes and cast the ray to the appropriate ray packet type, or implement
one general code path that uses the RTCRayN_XXX helper functions to access the
ray packet components.

These helper functions get a pointer to the ray packet (ray argument),
the packet size (N argument), and returns a reference to a component (e.g. x-
component of origin) of the the i-th ray of the packet (i argument).

EXIT STATUS

SEE ALSO

RTCHitN

162

7.82 RTCHitN
NAME

RTCHitN - hit packet of runtime size

SYNOPSIS

#include <embree3/rtcore.h>

struct HitN;

float& RTCHitN_Ng_x(RTCHitN* hit, unsigned int N, unsigned int i);
float& RTCHitN_Ng_y(RTCHitN* hit, unsigned int N, unsigned int i);
float& RTCHitN_Ng_z(RTCHitN* hit, unsigned int N, unsigned int i);

float& RTCHitN_u(RTCHitN* hit, unsigned int N, unsigned int i);
float& RTCHitN_v(RTCHitN* hit, unsigned int N, unsigned int i);

unsigned& RTCHitN_primID(RTCHitN* hit, unsigned int N, unsigned int i);
unsigned& RTCHitN_geomID(RTCHitN* hit, unsigned int N, unsigned int i);
unsigned& RTCHitN_instID(RTCHitN* hit, unsigned int N, unsigned int i, unsigned int level);

DESCRIPTION

When the hit packet size is not known at compile time (e.g. when Embree
returns a hit packet in the RTCFilterFuncN callback function), Embree uses
the RTCHitN type for hit packets. These hit packets can only have sizes of 1, 4,
8, or 16. No other packet size will be used.

You can either implement different special code paths for each of these possi-
ble packet sizes and cast the hit to the appropriate hit packet type, or implement
one general code path that uses the RTCHitN_XXX helper functions to access hit
packet components.

These helper functions get a pointer to the hit packet (hit argument), the
packet size (N argument), and returns a reference to a component (e.g. x com-
ponent of Ng) of the the i-th hit of the packet (i argument).

EXIT STATUS

SEE ALSO

RTCRayN

163

7.83 RTCRayHitN
NAME

RTCRayHitN - combined ray/hit packet of runtime size

SYNOPSIS

#include <embree3/rtcore_ray.h>

struct RTCRayHitN;

struct RTCRayN* RTCRayHitN_RayN(struct RTCRayHitN* rayhit, unsigned int N);
struct RTCHitN* RTCRayHitN_HitN(struct RTCRayHitN* rayhit, unsigned int N);

DESCRIPTION

When the packet size of a ray/hit structure is not known at compile time
(e.g. when Embree returns a ray/hit packet in the RTCIntersectFunctionN
callback function), Embree uses the RTCRayHitN type for ray packets. These
ray/hit packets can only have sizes of 1, 4, 8, or 16. No other packet size will
be used.

You can either implement different special code paths for each of these pos-
sible packet sizes and cast the ray/hit to the appropriate ray/hit packet type,
or extract the RTCRayN and RTCHitN components using the rtcGetRayN and
rtcGetHitN helper functions and use the RTCRayN_XXX and RTCHitN_XXX func-
tions to access the ray and hit parts of the structure.

EXIT STATUS

SEE ALSO

RTCHitN

164

7.84 rtcInitIntersectContext
NAME

rtcInitIntersectContext - initializes the intersection context

SYNOPSIS

#include <embree3/rtcore.h>

enum RTCIntersectContextFlags
{
RTC_INTERSECT_CONTEXT_FLAG_NONE,
RTC_INTERSECT_CONTEXT_FLAG_INCOHERENT,
RTC_INTERSECT_CONTEXT_FLAG_COHERENT,

};

struct RTCIntersectContext
{

enum RTCIntersectContextFlags flags;
RTCFilterFunctionN filter;
#if RTC_MAX_INSTANCE_LEVEL_COUNT > 1
unsigned int instStackSize;
#endif
unsigned int instID[RTC_MAX_INSTANCE_LEVEL_COUNT];

};

void rtcInitIntersectContext(
struct RTCIntersectContext* context

);

DESCRIPTION

A per ray-query intersection context (RTCIntersectContext type) is supported
that can be used to configure intersection flags (flags member), specify a filter
callback function (filter member), specify the chain of IDs of the current
instance (instID and instStackSize members), and to attach arbitrary data
to the query (e.g. per ray data).

The rtcInitIntersectContext function initializes the context to default
values and should be called to initialize every intersection context. This function
gets inlined, which minimizes overhead and allows for compiler optimizations.

The intersection context flag can be used to tune the behavior of the traver-
sal algorithm. Using the RTC_INTERSECT_CONTEXT_FLAG_INCOHERENT flags uses
an optimized traversal algorithm for incoherent rays (default), while RTC_IN-
TERSECT_CONTEXT_FLAG_COHERENT uses an optimized traversal algorithm for
coherent rays (e.g. primary camera rays).

165

Best primary ray performance can be obtained by using the ray stream
API and setting the intersect context flag to RTC_INTERSECT_CONTEXT_FLAG_
COHERENT. For secondary rays, it is typically better to use the RTC_INTERSECT_
CONTEXT_FLAG_INCOHERENT flag, unless the rays are known to be very coherent
too (e.g. for primary transparency rays).

A filter function can be specified inside the context. This filter function is
invoked as a second filter stage after the per-geometry intersect or occluded filter
function is invoked. Only rays that passed the first filter stage are valid in this
second filter stage. Having such a per ray-query filter function can be useful
to implement modifications of the behavior of the query, such as collecting all
hits or accumulating transparencies. The support for the context filter function
must be enabled for a scene by using the RTC_SCENE_FLAG_CONTEXT_FILTER_
FUNCTION scene flag.

It is guaranteed that the pointer to the intersection context passed to a ray
query is directly passed to the registered callback functions. This way it is
possible to attach arbitrary data to the end of the intersection context, such as
a per-ray payload.

Please note that the ray pointer is not guaranteed to be passed to the callback
functions, thus reading additional data from the ray pointer passed to callbacks
is not possible.

EXIT STATUS

No error code is set by this function.

SEE ALSO

rtcIntersect1, rtcOccluded1

166

7.85 rtcIntersect1
NAME

rtcIntersect1 - finds the closest hit for a single ray

SYNOPSIS

#include <embree3/rtcore.h>

void rtcIntersect1(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHit* rayhit

);

DESCRIPTION

The rtcIntersect1 function finds the closest hit of a single ray with the scene
(scene argument). The provided ray/hit structure (rayhit argument) contains
the ray to intersect and some hit output fields that are filled when a hit is found.

The user has to initialize the ray origin (org ray member), ray direction (dir
ray member), ray segment (tnear, tfar ray members), and set the ray flags to
0 (flags ray member). If the scene contains motion blur geometries, also the
ray time (time ray member) must be initialized to a value in the range [0, 1]. If
ray masks are enabled at compile time, the ray mask (mask ray member) must
be initialized as well. The ray segment has to be in the range [0,∞], thus ranges
that start behind the ray origin are not valid, but ranges can reach to infinity.
See Section RTCRay for the ray layout description.

The geometry ID (geomID hit member) of the hit data must be initialized
to RTC_INVALID_GEOMETRY_ID (-1).

Further, an intersection context for the ray query function must be created
and initialized (see rtcInitIntersectContext).

When no intersection is found, the ray/hit data is not updated. When an
intersection is found, the hit distance is written into the tfar member of the
ray and all hit data is set, such as unnormalized geometry normal in object
space (Ng hit member), local hit coordinates (u, v hit member), instance ID
stack (instID hit member), geometry ID (geomID hit member), and primitive
ID (primID hit member). See Section RTCHit for the hit layout description.

If the instance ID stack has a prefix of values not equal to RTC_INVALID_
GEOMETRY_ID, the instance ID on each level corresponds to the geometry ID of
the hit instance of the higher-level scene, the geometry ID corresponds to the
hit geometry inside the hit instanced scene, and the primitive ID corresponds
to the n-th primitive of that geometry.

If level 0 of the instance ID stack is equal to RTC_INVALID_GEOMETRY_ID,
the geometry ID corresponds to the hit geometry inside the top-level scene, and
the primitive ID corresponds to the n-th primitive of that geometry.

167

The implementation makes no guarantees that primitives whose hit distance
is exactly at (or very close to) tnear or tfar are hit or missed. If you want to
exclude intersections at tnear just pass a slightly enlarged tnear, and if you
want to include intersections at tfar pass a slightly enlarged tfar.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The ray pointer passed to callback functions is not guaranteed to be identical
to the original ray provided. To extend the ray with additional data to be
accessed in callback functions, use the intersection context.

The ray/hit structure must be aligned to 16 bytes.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO

rtcOccluded1, RTCRayHit, RTCRay, RTCHit

168

7.86 rtcOccluded1
NAME

rtcOccluded1 - finds any hit for a single ray

SYNOPSIS

#include <embree3/rtcore.h>

void rtcOccluded1(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRay* ray

);

DESCRIPTION

The rtcOccluded1 function checks for a single ray (ray argument) whether
there is any hit with the scene (scene argument).

The user must initialize the ray origin (org ray member), ray direction (dir
ray member), ray segment (tnear, tfar ray members), and must set the ray
flags to 0 (flags ray member). If the scene contains motion blur geometries,
also the ray time (time ray member) must be initialized to a value in the range
[0, 1]. If ray masks are enabled at compile time, the ray mask (mask ray member)
must be initialized as well. The ray segment must be in the range [0,∞], thus
ranges that start behind the ray origin are not valid, but ranges can reach to
infinity. See Section RTCRay for the ray layout description.

When no intersection is found, the ray data is not updated. In case a hit
was found, the tfar component of the ray is set to -inf.

The implementation makes no guarantees that primitives whose hit distance
is exactly at (or very close to) tnear or tfar are hit or missed. If you want to
exclude intersections at tnear just pass a slightly enlarged tnear, and if you
want to include intersections at tfar pass a slightly enlarged tfar.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The ray pointer passed to callback functions is not guaranteed to be identical
to the original ray provided. To extend the ray with additional data to be
accessed in callback functions, use the intersection context.

The ray must be aligned to 16 bytes.

169

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO

rtcOccluded1, RTCRay

170

7.87 rtcIntersect4/8/16
NAME

rtcIntersect4/8/16 - finds the closest hits for a ray packet

SYNOPSIS

#include <embree3/rtcore.h>

void rtcIntersect4(
const int* valid,
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHit4* rayhit

);

void rtcIntersect8(
const int* valid,
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHit8* rayhit

);

void rtcIntersect16(
const int* valid,
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHit16* rayhit

);

DESCRIPTION

The rtcIntersect4/8/16 functions finds the closest hits for a ray packet of size
4, 8, or 16 (rayhit argument) with the scene (scene argument). The ray/hit
input contains a ray packet and hit packet. See Section rtcIntersect1 for a
description of how to set up and trace rays.

A ray valid mask must be provided (valid argument) which stores one 32-
bit integer (-1 means valid and 0 invalid) per ray in the packet. Only active
rays are processed, and hit data of inactive rays is not changed.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The ray pointer passed to callback functions is not guaranteed to be identical
to the original ray provided. To extend the ray with additional data to be

171

accessed in callback functions, use the intersection context.
The implementation of these functions is guaranteed to invoke callback func-

tions always with the same ray packet size and ordering of rays as specified
initially.

For rtcIntersect4 the ray packet must be aligned to 16 bytes, for rtcIn-
tersect8 the alignment must be 32 bytes, and for rtcIntersect16 the align-
ment must be 64 bytes.

The rtcIntersect4, rtcIntersect8 and rtcIntersect16 functions may
change the ray packet size and ray order when calling back into intersect filter
functions or user geometry callbacks. Under some conditions the application
can assume packets to stay intakt, which can determined by querying the RTC_
DEVICE_PROPERTY_NATIVE_RAY4_SUPPORTED, RTC_DEVICE_PROPERTY_NATIVE_
RAY8_SUPPORTED, RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED properties
through the rtcGetDeviceProperty function. See rtcGetDeviceProperty for
more information.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO

rtcOccluded4/8/16

172

7.88 rtcOccluded4/8/16
NAME

rtcOccluded4/8/16 - finds any hits for a ray packet

SYNOPSIS

#include <embree3/rtcore.h>

void rtcOccluded4(
const int* valid,
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRay4* ray

);

void rtcOccluded8(
const int* valid,
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRay8* ray

);

void rtcOccluded16(
const int* valid,
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRay16* ray

);

DESCRIPTION

The rtcOccluded4/8/16 functions checks for each active ray of the ray packet of
size 4, 8, or 16 (ray argument) whether there is any hit with the scene (scene
argument). See Section rtcOccluded1 for a description of how to set up and
trace occlusion rays.

A ray valid mask must be provided (valid argument) which stores one 32-
bit integer (-1 means valid and 0 invalid) per ray in the packet. Only active
rays are processed, and hit data of inactive rays is not changed.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The ray pointer passed to callback functions is not guaranteed to be identical
to the original ray provided. To extend the ray with additional data to be

173

accessed in callback functions, use the intersection context.
The implementation of these functions is guaranteed to invoke callback func-

tions always with the same ray packet size and ordering of rays as specified
initially.

For rtcOccluded4 the ray packet must be aligned to 16 bytes, for rtcOc-
cluded8 the alignment must be 32 bytes, and for rtcOccluded16 the alignment
must be 64 bytes.

The rtcOccluded4, rtcOccluded8 and rtcOccluded16 functions may change
the ray packet size and ray order when calling back into intersect filter func-
tions or user geometry callbacks. Under some conditions the application can
assume packets to stay intakt, which can determined by querying the RTC_
DEVICE_PROPERTY_NATIVE_RAY4_SUPPORTED, RTC_DEVICE_PROPERTY_NATIVE_
RAY8_SUPPORTED, RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED properties
through the rtcGetDeviceProperty function. See rtcGetDeviceProperty for
more information.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO

rtcOccluded4/8/16

174

7.89 rtcIntersect1M
NAME

rtcIntersect1M - finds the closest hits for a stream of M single
rays

SYNOPSIS

#include <embree3/rtcore.h>

void rtcIntersect1M(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHit* rayhit,
unsigned int M,
size_t byteStride

);

DESCRIPTION

The rtcIntersect1M function finds the closest hits for a stream of M single rays
(rayhit argument) with the scene (scene argument). The rayhit argument
points to an array of ray and hit data with specified byte stride (byteStride
argument) between the ray/hit structures. See Section rtcIntersect1 for a de-
scription of how to set up and trace rays.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For this reason,
callback functions may be invoked with an arbitrary packet size (of size 1, 4,
8, or 16) and different ordering as specified initially. For this reason, one may
have to use the rayID component of the ray to identify the original ray, e.g. to
access a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than
its tfar value.

The stream size M can be an arbitrary positive integer including 0. Each ray
must be aligned to 16 bytes.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

175

SEE ALSO

rtcOccluded1M

176

7.90 rtcOccluded1M
NAME

rtcOccluded1M - finds any hits for a stream of M single rays

SYNOPSIS

#include <embree3/rtcore.h>

void rtcOccluded1M(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRay* ray,
unsigned int M,
size_t byteStride

);

DESCRIPTION

The rtcOccluded1M function checks whether there are any hits for a stream
of M single rays (ray argument) with the scene (scene argument). The ray
argument points to an array of rays with specified byte stride (byteStride
argument) between the rays. See Section rtcOccluded1 for a description of how
to set up and trace occlusion rays.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For this reason,
callback functions may be invoked with an arbitrary packet size (of size 1, 4,
8, or 16) and different ordering as specified initially. For this reason, one may
have to use the rayID component of the ray to identify the original ray, e.g. to
access a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than
its tfar value.

The stream size M can be an arbitrary positive integer including 0. Each ray
must be aligned to 16 bytes.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

177

SEE ALSO

rtcIntersect1M

178

7.91 rtcIntersect1Mp
NAME

rtcIntersect1Mp - finds the closest hits for a stream of M pointers
to single rays

SYNOPSIS

#include <embree3/rtcore.h>

void rtcIntersect1Mp(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHit** rayhit,
unsigned int M

);

DESCRIPTION

The rtcIntersect1Mp function finds the closest hits for a stream of M single rays
(rayhit argument) with the scene (scene argument). The rayhit argument
points to an array of pointers to the individual ray/hit structures. See Section
rtcIntersect1 for a description of how to set up and trace a ray.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For this reason,
callback functions may be invoked with an arbitrary packet size (of size 1, 4,
8, or 16) and different ordering as specified initially. For this reason, one may
have to use the rayID component of the ray to identify the original ray, e.g. to
access a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than
its tfar value.

The stream size M can be an arbitrary positive integer including 0. Each ray
must be aligned to 16 bytes.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO

rtcOccluded1Mp

179

7.92 rtcOccluded1Mp
NAME

rtcOccluded1Mp - find any hits for a stream of M pointers to
single rays

SYNOPSIS

#include <embree3/rtcore.h>

void rtcOccluded1M(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRay** ray,
unsigned int M

);

DESCRIPTION

The rtcOccluded1Mp function checks whether there are any hits for a stream
of M single rays (ray argument) with the scene (scene argument). The ray
argument points to an array of pointers to rays. Section rtcOccluded1 for a
description of how to set up and trace a occlusion rays.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For this reason,
callback functions may be invoked with an arbitrary packet size (of size 1, 4,
8, or 16) and different ordering as specified initially. For this reason, one may
have to use the rayID component of the ray to identify the original ray, e.g. to
access a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than
its tfar value.

The stream size M can be an arbitrary positive integer including 0. Each ray
must be aligned to 16 bytes.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO

rtcIntersect1Mp

180

7.93 rtcIntersectNM
NAME

rtcIntersectNM - finds the closest hits for a stream of M
ray packets of size N

SYNOPSIS

#include <embree3/rtcore.h>

void rtcIntersectNM(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHitN* rayhit,
unsigned int N,
unsigned int M,
size_t byteStride

);

DESCRIPTION

The rtcIntersectNM function finds the closest hits for a stream of M ray pack-
ets (rayhit argument) of size N with the scene (scene argument). The rays
argument points to an array of ray and hit packets with specified byte stride
(byteStride argument) between the ray/hit packets. See Section rtcIntersect1
for a description of how to set up and trace rays.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For this reason,
callback functions may be invoked with an arbitrary packet size (of size 1, 4,
8, or 16) and different ordering as specified initially. For this reason, one may
have to use the rayID component of the ray to identify the original ray, e.g. to
access a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than
its tfar value.

The packet size N must be larger than 0, and the stream size M can be an
arbitrary positive integer including 0. Each ray must be aligned to 16 bytes.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

181

SEE ALSO

rtcOccludedNM

182

7.94 rtcOccludedNM
NAME

rtcOccludedNM - finds any hits for a stream of M ray packets of
size N

SYNOPSIS

#include <embree3/rtcore.h>

void rtcOccludedNM(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayN* ray,
unsigned int N,
unsigned int M,
size_t byteStride

);

DESCRIPTION

The rtcOccludedNM function checks whether there are any hits for a stream
of M ray packets (ray argument) of size N with the scene (scene argument).
The ray argument points to an array of ray packets with specified byte stride
(byteStride argument) between the ray packets. See Section rtcOccluded1 for
a description of how to set up and trace occlusion rays.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For this reason,
callback functions may be invoked with an arbitrary packet size (of size 1, 4,
8, or 16) and different ordering as specified initially. For this reason, one may
have to use the rayID component of the ray to identify the original ray, e.g. to
access a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than
its tfar value.

The packet size N must be larger than 0, and the stream size M can be an
arbitrary positive integer including 0. Each ray must be aligned to 16 bytes.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

183

SEE ALSO

rtcIntersectNM

184

7.95 rtcIntersectNp
NAME

rtcIntersectNp - finds the closest hits for a SOA ray stream of
size N

SYNOPSIS

#include <embree3/rtcore.h>

void rtcIntersectNp(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHitNp* rayhit,
unsigned int N

);

DESCRIPTION

The rtcIntersectNp function finds the closest hits for a SOA ray stream (rays
argument) of size N (basically a large ray packet) with the scene (scene argu-
ment). The rayhit argument points to two structures of pointers with one
pointer for each ray and hit component. Each of these pointers points to an
array with the ray or hit component data for each ray or hit. This way the indi-
vidual components of the SOA ray stream do not need to be stored sequentially
in memory, which makes it possible to have large varying size ray packets in
SOA layout. See Section rtcIntersect1 for a description of how to set up and
trace rays.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For this reason,
callback functions may be invoked with an arbitrary packet size (of size 1, 4,
8, or 16) and different ordering as specified initially. For this reason, one may
have to use the rayID component of the ray to identify the original ray, e.g. to
access a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than
its tfar value.

The stream size N can be an arbitrary positive integer including 0. Each ray
component array must be aligned to 16 bytes.

185

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO

rtcOccludedNp

186

7.96 rtcOccludedNp
NAME

rtcOccludedNp - finds any hits for a SOA ray stream of size N

SYNOPSIS

#include <embree3/rtcore.h>

void rtcOccludedNp(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayNp* ray,
unsigned int N

);

DESCRIPTION

The rtcOccludedNp function checks whether there are any hits for a SOA ray
stream (ray argument) of size N (basically a large ray packet) with the scene
(scene argument). The ray argument points to a structure of pointers with one
pointer for each ray component. Each of these pointers points to an array with
the ray component data for each ray. This way the individual components of the
SOA ray stream do not need to be stored sequentially in memory, which makes
it possible to have large varying size ray packets in SOA layout. See Section
rtcOccluded1 for a description of how to set up and trace occlusion rays.

The intersection context (context argument) can specify flags to optimize
traversal and a filter callback function to be invoked for every intersection. Fur-
ther, the pointer to the intersection context is propagated to callback functions
invoked during traversal and can thus be used to extend the ray with additional
data. See Section RTCIntersectContext for more information.

The implementation of the stream ray query functions may re-order rays
arbitrarily and re-pack rays into ray packets of different size. For this reason,
callback functions may be invoked with an arbitrary packet size (of size 1, 4,
8, or 16) and different ordering as specified initially. For this reason, one may
have to use the rayID component of the ray to identify the original ray, e.g. to
access a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than
its tfar value.

The stream size N can be an arbitrary positive integer including 0. Each ray
component array must be aligned to 16 bytes.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

187

SEE ALSO

rtcIntersectNp

188

7.97 rtcInitPointQueryContext
NAME

rtcInitPointQueryContext - initializes the context information (e.g.
stack of (multilevel-)instance transformations) for point queries

SYNOPSIS

#include <embree3/rtcore.h>

struct RTC_ALIGN(16) RTCPointQueryContext
{

// accumulated 4x4 column major matrices from world to instance space.
float world2inst[RTC_MAX_INSTANCE_LEVEL_COUNT][16];

// accumulated 4x4 column major matrices from instance to world space.
float inst2world[RTC_MAX_INSTANCE_LEVEL_COUNT][16];

// instance ids.
unsigned int instID[RTC_MAX_INSTANCE_LEVEL_COUNT];

// number of instances currently on the stack.
unsigned int instStackSize;

};

void rtcInitPointQueryContext(
struct RTCPointQueryContext* context

);

DESCRIPTION

A stack (RTCPointQueryContext type) which stores the IDs and instance trans-
formations during a BVH traversal for a point query. The transformations are
assumed to be affine transformations (3×3 matrix plus translation) and there-
fore the last column is ignored (see RTC_GEOMETRY_TYPE_INSTANCE
for details).

The rtcInitPointContext function initializes the context to default values
and should be called for initialization.

The context will be passed as an argument to the point query callback func-
tion (see rtcSetGeometryPointQueryFunction) and should be used to pass in-
stance information down the instancing chain for user defined instancing (see
tutorial [ClosestPoint] for a reference implementation of point queries with user
defined instancing).

The context is an necessary argument to [rtcPointQuery] and Embree in-
ternally uses the topmost instance tranformation of the stack to transform the
point query into instance space.

189

EXIT STATUS

No error code is set by this function.

SEE ALSO

[rtcPointQuery], rtcSetGeometryPointQueryFunction

190

rtcPointQuery

NAME

rtcPointQuery - traverses the BVH with a point query object

SYNOPSIS

#include <embree3/rtcore.h>

struct RTC_ALIGN(16) RTCPointQuery
{

// location of the query
float x;
float y;
float z;

// radius and time of the query
float radius;
float time;

};

void rtcPointQuery(
RTCScene scene,
struct RTCPointQuery* query,
struct RTCPointQueryContext* context,
struct RTCPointQueryFunction* queryFunc,
void* userPtr

);

DESCRIPTION

The rtcPointQuery function traverses the BVH using a RTCPointQuery object
(query argument) and calls a user defined callback function (e.g queryFunc
argument) for each primitive of the scene (scene argument) that intersects the
query domain.

The user has to initialize the query location (x, y and z member) and query
radius in the range [0,∞]. If the scene contains motion blur geometries, also
the query time (time member) must be initialized to a value in the range [0, 1].

Further, a RTCPointQueryContext (context argument) must be created
and initialized. It contains ID and transformation information of the instancing
hierarchy if (multilevel-)instancing is used. See rtcInitPointQueryContext for
further information.

For every primitive that intersects the query domain, the callback function
(queryFunc argument) is called, in which distance computations to the primitive
can be implemented. The user will be provided with the primID and geomID of

191

the according primitive, however, the geometry information (e.g. triangle index
and vertex data) has to be determined manually. The userPtr argument can
be used to input geometry data of the scene or output results of the point query
(e.g. closest point currently found on surface geometry (see tutorial [Closest-
Point])).

The parameter queryFunc is optional and can be NULL, in which case the
callback function is not invoked. However, a callback function can still get
attached to a specific RTCGeometry object using rtcSetGeometryPointQuery-
Function. If a callback function is attached to a geometry and (a potentially
different) callback function is passed as an argument to rtcPointQuery, both
functions are called for the primitives of the according geometries.

The query radius can be decreased inside the callback function, which allows
to efficiently cull parts of the scene during BVH traversal. Increasing the query
radius and modifying time or location of the query will result in undefined
behaviour.

The callback function will be called for all primitives in a leaf node of the
BVH even if the primitive is outside the query domain, since Embree does not
gather geometry information of primitives internally.

Point queries can be used with (multilevel)-instancing. However, care has
to be taken when the instance transformation contains anisotropic scaling or
sheering. In these cases distance computations have to be performed in world
space to ensure correctness and the ellipsoidal query domain (in instance space)
will be approximated with its axis aligned bounding box interally. Therefore, the
callback function might be invoked even for primitives in inner BVH nodes that
do not intersect the query domain. See rtcSetGeometryPointQueryFunction for
details.

The point query structure must be aligned to 16 bytes.

SUPPORTED PRIMITIVES

Currenly, all primitive types are supported by the point query API except of
points (see RTC_GEOMETRY_TYPE_POINT), curves (see RTC_GEOMETRY_TYPE_CURVE)
and sudivision surfaces (see [RTC_GEOMETRY_SUBDIVISION]).

EXIT STATUS

For performance reasons this function does not do any error checks, thus will
not set any error flags on failure.

SEE ALSO

rtcSetGeometryPointQueryFunction, rtcInitPointQueryContext

192

7.98 rtcNewBVH
NAME

rtcNewBVH - creates a new BVH object

SYNOPSIS

#include <embree3/rtcore.h>

RTCBVH rtcNewBVH(RTCDevice device);

DESCRIPTION

This function creates a new BVH object and returns a handle to this BVH. The
BVH object is reference counted with an initial reference count of 1. The handle
can be released using the rtcReleaseBVH API call.

The BVH object can be used to build a BVH in a user-specified format over
user-specified primitives. See the documentation of the rtcBuildBVH call for
more details.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcRetainBVH, rtcReleaseBVH, rtcBuildBVH

193

7.99 rtcRetainBVH
NAME

rtcRetainBVH - increments the BVH reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcRetainBVH(RTCBVH bvh);

DESCRIPTION

BVH objects are reference counted. The rtcRetainBVH function increments
the reference count of the passed BVH object (bvh argument). This function
together with rtcReleaseBVH allows to use the internal reference counting in a
C++ wrapper class to handle the ownership of the object.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewBVH, rtcReleaseBVH

194

7.100 rtcReleaseBVH
NAME

rtcReleaseBVH - decrements the BVH reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcReleaseBVH(RTCBVH bvh);

DESCRIPTION

BVH objects are reference counted. The rtcReleaseBVH function decrements
the reference count of the passed BVH object (bvh argument). When the refer-
ence count falls to 0, the BVH gets destroyed.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewBVH, rtcRetainBVH

195

7.101 rtcBuildBVH
NAME

rtcBuildBVH - builds a BVH

SYNOPSIS

#include <embree3/rtcore.h>

struct RTC_ALIGN(32) RTCBuildPrimitive
{
float lower_x, lower_y, lower_z;
unsigned int geomID;
float upper_x, upper_y, upper_z;
unsigned int primID;

};

typedef void* (*RTCCreateNodeFunction) (
RTCThreadLocalAllocator allocator,
unsigned int childCount,
void* userPtr

);

typedef void (*RTCSetNodeChildrenFunction) (
void* nodePtr,
void** children,
unsigned int childCount,
void* userPtr

);

typedef void (*RTCSetNodeBoundsFunction) (
void* nodePtr,
const struct RTCBounds** bounds,
unsigned int childCount,
void* userPtr

);

typedef void* (*RTCCreateLeafFunction) (
RTCThreadLocalAllocator allocator,
const struct RTCBuildPrimitive* primitives,
size_t primitiveCount,
void* userPtr

);

typedef void (*RTCSplitPrimitiveFunction) (
const struct RTCBuildPrimitive* primitive,

196

unsigned int dimension,
float position,
struct RTCBounds* leftBounds,
struct RTCBounds* rightBounds,
void* userPtr

);

typedef bool (*RTCProgressMonitorFunction)(
void* userPtr, double n

);

enum RTCBuildFlags
{
RTC_BUILD_FLAG_NONE,
RTC_BUILD_FLAG_DYNAMIC

};

struct RTCBuildArguments
{
size_t byteSize;

enum RTCBuildQuality buildQuality;
enum RTCBuildFlags buildFlags;
unsigned int maxBranchingFactor;
unsigned int maxDepth;
unsigned int sahBlockSize;
unsigned int minLeafSize;
unsigned int maxLeafSize;
float traversalCost;
float intersectionCost;

RTCBVH bvh;
struct RTCBuildPrimitive* primitives;
size_t primitiveCount;
size_t primitiveArrayCapacity;

RTCCreateNodeFunction createNode;
RTCSetNodeChildrenFunction setNodeChildren;
RTCSetNodeBoundsFunction setNodeBounds;
RTCCreateLeafFunction createLeaf;
RTCSplitPrimitiveFunction splitPrimitive;
RTCProgressMonitorFunction buildProgress;
void* userPtr;

};

struct RTCBuildArguments rtcDefaultBuildArguments();

197

void* rtcBuildBVH(
const struct RTCBuildArguments* args

);

DESCRIPTION

The rtcBuildBVH function can be used to build a BVH in a user-defined format
over arbitrary primitives. All arguments to the function are provided through
the RTCBuildArguments structure. The first member of that structure must be
set to the size of the structure in bytes (bytesSize member) which allows future
extensions of the structure. It is recommended to initialize the build arguments
structure using the rtcDefaultBuildArguments function.

The rtcBuildBVH function gets passed the BVH to build (bvh member), the
array of primitives (primitives member), the capacity of that array (prim-
itiveArrayCapacity member), the number of primitives stored inside the ar-
ray (primitiveCount member), callback function pointers, and a user-defined
pointer (userPtr member) that is passed to all callback functions when invoked.
The primitives array can be freed by the application after the BVH is built.
All callback functions are typically called from multiple threads, thus their im-
plementation must be thread-safe.

Four callback functions must be registered, which are invoked during build
to create BVH nodes (createNode member), to set the pointers to all children
(setNodeChildren member), to set the bounding boxes of all children (setN-
odeBounds member), and to create a leaf node (createLeaf member).

The function pointer to the primitive split function (splitPrimitive mem-
ber) may be NULL, however, then no spatial splitting in high quality mode is
possible. The function pointer used to report the build progress (buildProgress
member) is optional and may also be NULL.

Further, some build settings are passed to configure the BVH build. Using
the build quality settings (buildQuality member), one can select between a
faster, low quality build which is good for dynamic scenes, and a standard qual-
ity build for static scenes. One can also specify the desired maximum branching
factor of the BVH (maxBranchingFactor member), the maximum depth the
BVH should have (maxDepth member), the block size for the SAH heuristic
(sahBlockSize member), the minimum and maximum leaf size (minLeafSize
and maxLeafSize member), and the estimated costs of one traversal step and
one primitive intersection (traversalCost and intersectionCost members).
When enabling the RTC_BUILD_FLAG_DYNAMIC build flags (buildFlags mem-
ber), re-build performance for dynamic scenes is improved at the cost of higher
memory requirements.

To spatially split primitives in high quality mode, the builder needs extra
space at the end of the build primitive array to store splitted primitives. The
total capacity of the build primitive array is passed using the primitiveArray-
Capacity member, and should be about twice the number of primitives when
using spatial splits.

198

The RTCCreateNodeFunc and RTCCreateLeafFunc callbacks are passed a
thread local allocator object that should be used for fast allocation of nodes
using the rtcThreadLocalAlloc function. We strongly recommend using this
allocation mechanism, as alternative approaches like standard malloc can be
over 10× slower. The allocator object passed to the create callbacks may be
used only inside the current thread. Memory allocated using rtcThreadLo-
calAlloc is automatically freed when the RTCBVH object is deleted. If you use
your own memory allocation scheme you have to free the memory yourself when
the RTCBVH object is no longer used.

The RTCCreateNodeFunc callback additionally gets the number of children
for this node in the range from 2 to maxBranchingFactor (childCount argu-
ment).

The RTCSetNodeChildFunc callback function gets a pointer to the node as
input (nodePtr argument), an array of pointers to the children (childPtrs
argument), and the size of this array (childCount argument).

The RTCSetNodeBoundsFunc callback function gets a pointer to the node as
input (nodePtr argument), an array of pointers to the bounding boxes of the
children (bounds argument), and the size of this array (childCount argument).

The RTCCreateLeafFunc callback additionally gets an array of primitives
as input (primitives argument), and the size of this array (primitiveCount
argument). The callback should read the geomID and primID members from
the passed primitives to construct the leaf.

The RTCSplitPrimitiveFunc callback is invoked in high quality mode to
split a primitive (primitive argument) at the specified position (position
argument) and dimension (dimension argument). The callback should return
bounds of the clipped left and right parts of the primitive (leftBounds and
rightBounds arguments).

The RTCProgressMonitorFunction callback function is called with the es-
timated completion rate n in the range [0, 1]. Returning true from the callback
lets the build continue; returning false cancels the build.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewBVH

199

Chapter 8

Performance
Recommendations

8.1 MXCSR control and status register
It is strongly recommended to have the Flush to Zero and Denormals are
Zero mode of the MXCSR control and status register enabled for each thread
before calling the rtcIntersect-type and rtcOccluded-type functions. Other-
wise, under some circumstances special handling of denormalized floating point
numbers can significantly reduce application and Embree performance. When
using Embree together with the Intel® Threading Building Blocks, it is sufficient
to execute the following code at the beginning of the application main thread
(before the creation of the tbb::task_scheduler_init object):

#include <xmmintrin.h>
#include <pmmintrin.h>
...
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);

If using a different tasking system, make sure each rendering thread has the
proper mode set.

8.2 Thread Creation and Affinity Settings
Tasking systems like TBB create worker threads on demand, which will add a
runtime overhead for the very first rtcCommitScene call. In case you want to
benchmark the scene build time, you should start the threads at application
startup. You can let Embree start TBB threads by passing start_threads=1
to the cfg parameter of rtcNewDevice.

200

On machines with a high thread count (e.g. dual-socket Xeon or Xeon Phi
machines), affinitizing TBB worker threads increases build and rendering per-
formance. You can let Embree affinitize TBB worker threads by passing set_
affinity=1 to the cfg parameter of rtcNewDevice. By default, threads are
not affinitized by Embree with the exception of Xeon Phi Processors where they
are affinitized by default.

All Embree tutorials automatically start and affinitize TBB worker threads
by passing start_threads=1,set_affinity=1 to rtcNewDevice.

8.3 Fast Coherent Rays
For getting the highest performance for highly coherent rays, e.g. primary
or hard shadow rays, it is recommended to use packets or streams of sin-
gle rays/packets with setting the RTC_INTERSECT_CONTEXT_FLAG_COHERENT flag
in the RTCIntersectContext passed to the rtcIntersect/rtcOccluded calls.
The total number of rays in a coherent stream of ray packets should be around
64, e.g. 8 times 8-wide packets, or 4 times 16-wide packets. The rays inside each
packet should be grouped as coherent as possible.

8.4 Huge Page Support
It is recommended to use huge pages under Linux to increase rendering perfor-
mance. Embree supports 2MB huge pages under Windows, Linux, and macOS.
Under Linux huge page support is enabled by default, and under Windows and
macOS disabled by default. Huge page support can be enabled in Embree by
passing hugepages=1 to rtcNewDevice or disabled by passing hugepages=0 to
rtcNewDevice.

We recommend using 2MB huge pages with Embree under Linux as this
improves ray tracing performance by about 5-10%. Under Windows using huge
pages requires the application to run in elevated mode which is a security issue,
thus likely not an option for most use cases. Under macOS huge pages are
rarely available as memory tends to get quickly fragmented, thus we do not
recommend using huge pages on macOS.

8.4.1 Huge Pages under Linux
Linux supports transparent huge pages and explicit huge pages. To enable
transparent huge page support under Linux, execute the following as root:

echo always > /sys/kernel/mm/transparent_hugepage/enabled

When transparent huge pages are enabled, the kernel tries to merge 4KB
pages to 2MB pages when possible as a background job. Many Linux distri-
butions have transparent huge pages enabled by default. See the following
webpage for more information on transparent huge pages under Linux. In this

201

https://www.kernel.org/doc/Documentation/vm/transhuge.txt

mode each application, including your rendering application based on Embree,
will automatically tend to use huge pages.

Using transparent huge pages, the transitioning from 4KB to 2MB pages
might take some time. For that reason Embree also supports allocating 2MB
pages directly when a huge page pool is configured. Such a pool can be config-
ured by writing some number of huge pages to allocate to /proc/sys/vm/nr_
overcommit_hugepages as root user. E.g. to configure 2GB of address space
for huge page allocation, execute the following as root:

echo 1000 > /proc/sys/vm/nr_overcommit_hugepages

See the following webpage for more information on huge pages under Linux.

8.4.2 Huge Pages under Windows
To use huge pages under Windows, the current user must have the “Lock pages
in memory” (SeLockMemoryPrivilege) assigned. This can be configured through
the “Local Security Policy” application, by adding a user to “Local Policies” ->
“User Rights Assignment” -> “Lock pages in memory”. You have to log out and
in again for this change to take effect.

Further, your application must be executed as an elevated process (“Run as
administrator”) and the “SeLockMemoryPrivilege” must be explicitly enabled
by your application. Example code on how to enable this privilege can be found
in the “common/sys/alloc.cpp” file of Embree. Alternatively, Embree will try
to enable this privilege when passing enable_selockmemoryprivilege=1 to
rtcNewDevice. Further, huge pages should be enabled in Embree by passing
hugepages=1 to rtcNewDevice.

When the system has been running for a while, physical memory gets frag-
mented, which can slow down the allocation of huge pages significantly under
Windows.

8.4.3 Huge Pages under macOS
To use huge pages under macOS you have to pass hugepages=1 to rtcNewDevice
to enable that feature in Embree.

When the system has been running for a while, physical memory gets quickly
fragmented, and causes huge page allocations to fail. For this reason, huge pages
are not very useful under macOS in practice.

8.5 Avoid store-to-load forwarding issues with
single rays

We recommend to use a single SSE store to set up the org and tnear com-
ponents, and a single SSE store to set up the dir and time components of a

202

https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

single ray (RTCRay type). Storing these values using scalar stores causes a store-
to-load forwarding penalty because Embree is reading these components using
SSE loads later on.

203

Chapter 9

Embree Tutorials

Embree comes with a set of tutorials aimed at helping users understand how
Embree can be used and extended. There is a very basic minimal that can
be compiled as both C and C++, which should get new users started quickly.
All other tutorials exist in an ISPC and C++ version to demonstrate the two
versions of the API. Look for files named tutorialname_device.ispc for the
ISPC implementation of the tutorial, and files named tutorialname_device.
cpp for the single ray C++ version of the tutorial. To start the C++ version
use the tutorialname executables, to start the ISPC version use the tutorial-
name_ispc executables. All tutorials can print available command line options
using the --help command line parameter.

For all tutorials except minimal, you can select an initial camera using the
--vp (camera position), --vi (camera look-at point), --vu (camera up vector),
and --fov (vertical field of view) command line parameters:

./triangle_geometry --vp 10 10 10 --vi 0 0 0

You can select the initial window size using the --size command line pa-
rameter, or start the tutorials in full screen using the --fullscreen parameter:

./triangle_geometry --size 1024 1024

./triangle_geometry --fullscreen

The initialization string for the Embree device (rtcNewDevice call) can be
passed to the ray tracing core through the --rtcore command line parameter,
e.g.:

./triangle_geometry --rtcore verbose=2,threads=1

The navigation in the interactive display mode follows the camera orbit
model, where the camera revolves around the current center of interest. With
the left mouse button you can rotate around the center of interest (the point
initially set with --vi). Holding Control pressed while clicking the left mouse

204

button rotates the camera around its location. You can also use the arrow keys
for navigation.

You can use the following keys:

F1 Default shading
F2 Gray EyeLight shading
F3 Traces occlusion rays only.
F4 UV Coordinate visualization
F5 Geometry normal visualization
F6 Geometry ID visualization
F7 Geometry ID and Primitive ID visualization
F8 Simple shading with 16 rays per pixel for benchmarking.
F9 Switches to render cost visualization. Pressing again reduces brightness.
F10 Switches to render cost visualization. Pressing again increases brightness.
f Enters or leaves full screen mode.
c Prints camera parameters.
ESC Exits the tutorial.
q Exits the tutorial.

9.1 Minimal
This tutorial is designed to get new users started with Embree. It can be
compiled as both C and C++. It demonstrates how to initialize a device and
scene, and how to intersect rays with the scene. There is no image output to
keep the tutorial as simple as possible.

9.2 Triangle Geometry
This tutorial demonstrates the creation of a static cube and ground plane using
triangle meshes. It also demonstrates the use of the rtcIntersect1 and rt-
cOccluded1 functions to render primary visibility and hard shadows. The cube
sides are colored based on the ID of the hit primitive.

9.3 Dynamic Scene
This tutorial demonstrates the creation of a dynamic scene, consisting of several
deforming spheres. Half of the spheres use the RTC_BUILD_QUALITY_REFIT ge-
ometry build quality, which allows Embree to use a refitting strategy for these
spheres, the other half uses the RTC_BUILD_QUALITY_LOW geometry build quality,
causing a high performance rebuild of their spatial data structure each frame.
The spheres are colored based on the ID of the hit sphere geometry.

205

Figure 9.1:

206

Figure 9.2:

207

Figure 9.3:

208

Figure 9.4:

9.4 User Geometry
This tutorial shows the use of user-defined geometry, to re-implement instancing,
and to add analytic spheres. A two-level scene is created, with a triangle mesh
as ground plane, and several user geometries that instance other scenes with a
small number of spheres of different kinds. The spheres are colored using the
instance ID and geometry ID of the hit sphere, to demonstrate how the same
geometry instanced in different ways can be distinguished.

9.5 Viewer
This tutorial demonstrates a simple OBJ viewer that traces primary visibility
rays only. A scene consisting of multiple meshes is created, each mesh sharing

209

Figure 9.5:

the index and vertex buffer with the application. It also demonstrates how to
support additional per-vertex data, such as shading normals.

You need to specify an OBJ file at the command line for this tutorial to
work:

./viewer -i model.obj

9.6 Stream Viewer
This tutorial is a simple OBJ viewer that demonstrates the use of ray streams.
You need to specify an OBJ file at the command line for this tutorial to work:

./viewer_stream -i model.obj

210

Figure 9.6:

9.7 Intersection Filter
This tutorial demonstrates the use of filter callback functions to efficiently im-
plement transparent objects. The filter function used for primary rays lets the
ray pass through the geometry if it is entirely transparent. Otherwise, the shad-
ing loop handles the transparency properly, by potentially shooting secondary
rays. The filter function used for shadow rays accumulates the transparency of
all surfaces along the ray, and terminates traversal if an opaque occluder is hit.

9.8 Instanced Geometry
This tutorial demonstrates the in-build instancing feature of Embree, by in-
stancing a number of other scenes built from triangulated spheres. The spheres

211

Figure 9.7:

212

Figure 9.8:

are again colored using the instance ID and geometry ID of the hit sphere, to
demonstrate how the same geometry instanced in different ways can be distin-
guished.

9.9 Multi Level Instancing
This tutorial demonstrates multi-level instancing, i.e., nesting instances into
instances. To enable the tutorial, set the compile-time variable EMBREE_MAX_
INSTANCE_LEVEL_COUNT to a value other than the default 1. This variable is
available in the code as RTC_MAX_INSTANCE_LEVEL_COUNT.

The renderer uses a basic path tracing approach, and the image will progres-
sively refine over time. There are two levels of instances in this scene: multi-
ple instances of the same tree nest instances of a twig. Intersections on up to
RTC_MAX_INSTANCE_LEVEL_COUNT nested levels of instances work out of the box.
Users may obtain the instance ID stack for a given hitpoint from the instID
member. During shading, the instance ID stack is used to accumulate normal
transformation matrices for each hit. The tutorial visualizes transformed nor-
mals as colors.

9.10 Path Tracer
This tutorial is a simple path tracer, based on the viewer tutorial.

You need to specify an OBJ file and light source at the command line for
this tutorial to work:

./pathtracer -i model.obj --ambientlight 1 1 1

As example models we provide the “Austrian Imperial Crown” model by
Martin Lubich and the “Asian Dragon” model from the Stanford 3D Scanning
Repository.

crown.zip

213

http://www.loramel.net
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://github.com/embree/models/releases/download/release/crown.zip

Figure 9.9:

214

Figure 9.10:

asian_dragon.zip
To render these models execute the following:

./pathtracer -c crown/crown.ecs

./pathtracer -c asian_dragon/asian_dragon.ecs

9.11 Hair
This tutorial demonstrates the use of the hair geometry to render a hairball.

215

https://github.com/embree/models/releases/download/release/asian_dragon.zip

Figure 9.11:

216

Figure 9.12:

9.12 Curve Geometry
This tutorial demonstrates the use of the B-Spline and Catmull-Rom curve
geometries.

9.13 Subdivision Geometry
This tutorial demonstrates the use of Catmull-Clark subdivision surfaces.

217

Figure 9.13:

9.14 Displacement Geometry
This tutorial demonstrates the use of Catmull-Clark subdivision surfaces with
procedural displacement mapping using a constant edge tessellation level.

9.15 Grid Geometry
This tutorial demonstrates the use of the memory efficient grid primitive to
handle highly tessellated and displaced geometry.

9.16 Point Geometry
This tutorial demonstrates the use of the three representations of point geome-
try.

9.17 Motion Blur Geometry
This tutorial demonstrates rendering of motion blur using the multi-segment
motion blur feature. Shown is motion blur of a triangle mesh, quad mesh,
subdivision surface, line segments, hair geometry, Bézier curves, instantiated
triangle mesh where the instance moves, instantiated quad mesh where the
instance and the quads move, and user geometry.

The number of time steps used can be configured using the --time-steps
<int> and --time-steps2 <int> command line parameters, and the geometry
can be rendered at a specific time using the the --time <float> command line
parameter.

218

Figure 9.14:

219

Figure 9.15:

220

Figure 9.16:

221

Figure 9.17:

9.18 Interpolation
This tutorial demonstrates interpolation of user-defined per-vertex data.

9.19 Closest Point
This tutorial demonstrates a use-case of the point query API. The scene consists
of a simple collection of objects that are instanced and for several point in the
scene (red points) the closest point on the surfaces of the scene are computed
(white points). The closest point functionality is implemented for Embree inter-
nal and for user-defined instancing. The tutorial also illustrates how to handle
instance transformations that are not similarity transforms.

222

Figure 9.18:

223

Figure 9.19:

9.20 Voronoi
This tutorial demonstrates how to implement nearest neighbour lookups using
the point query API. Several colored points are located on a plane and the
corresponding voroni regions are illustrated.

9.21 BVH Builder
This tutorial demonstrates how to use the templated hierarchy builders of Em-
bree to build a bounding volume hierarchy with a user-defined memory layout
using a high-quality SAH builder using spatial splits, a standard SAH builder,
and a very fast Morton builder.

224

9.22 BVH Access
This tutorial demonstrates how to access the internal triangle acceleration struc-
ture build by Embree. Please be aware that the internal Embree data structures
might change between Embree updates.

9.23 Find Embree
This tutorial demonstrates how to use the FIND_PACKAGE CMake feature to
use an installed Embree. Under Linux and macOS the tutorial finds the Em-
bree installation automatically, under Windows the embree_DIR CMake vari-
able must be set to the following folder of the Embree installation: C:\Program
Files\Intel\Embree3.

225

	Embree Overview
	Supported Platforms
	Embree Support and Contact
	Version History
	Acknowledgements

	Installation of Embree
	Windows MSI Installer
	Windows ZIP File
	Linux RPMs
	Linux tar.gz Files
	macOS PKG Installer
	macOS tar.gz file

	Compiling Embree
	Linux and macOS
	Windows
	CMake Configuration

	Using Embree
	Embree API
	Device Object
	Scene Object
	Geometry Object
	Ray Queries
	Point Queries
	Miscellaneous

	Upgrading from Embree 2 to Embree 3
	Device
	Scene
	Geometry
	Buffers
	Miscellaneous

	Embree API Reference
	rtcNewDevice
	rtcRetainDevice
	rtcReleaseDevice
	rtcGetDeviceProperty
	rtcGetDeviceError
	rtcSetDeviceErrorFunction
	rtcSetDeviceMemoryMonitorFunction
	rtcNewScene
	rtcRetainScene
	rtcReleaseScene
	rtcAttachGeometry
	rtcAttachGeometryByID
	rtcDetachGeometry
	rtcGetGeometry
	rtcCommitScene
	rtcJoinCommitScene
	rtcSetSceneProgressMonitorFunction
	rtcSetSceneBuildQuality
	rtcSetSceneFlags
	rtcGetSceneFlags
	rtcGetSceneBounds
	rtcGetSceneLinearBounds
	rtcNewGeometry
	RTC_GEOMETRY_TYPE_TRIANGLE
	RTC_GEOMETRY_TYPE_QUAD
	RTC_GEOMETRY_TYPE_GRID
	RTC_GEOMETRY_TYPE_SUBDIVISION
	RTC_GEOMETRY_TYPE_CURVE
	RTC_GEOMETRY_TYPE_POINT
	RTC_GEOMETRY_TYPE_USER
	RTC_GEOMETRY_TYPE_INSTANCE
	rtcRetainGeometry
	rtcReleaseGeometry
	rtcCommitGeometry
	rtcEnableGeometry
	rtcDisableGeometry
	rtcSetGeometryTimeStepCount
	rtcSetGeometryTimeRange
	rtcSetGeometryVertexAttributeCount
	rtcSetGeometryMask
	rtcSetGeometryBuildQuality
	rtcSetGeometryBuffer
	rtcSetSharedGeometryBuffer
	rtcSetNewGeometryBuffer
	rtcGetGeometryBufferData
	rtcUpdateGeometryBuffer
	rtcSetGeometryIntersectFilterFunction
	rtcSetGeometryOccludedFilterFunction
	rtcFilterIntersection
	rtcFilterOcclusion
	rtcSetGeometryUserData
	rtcGetGeometryUserData
	rtcSetGeometryUserPrimitiveCount
	rtcSetGeometryBoundsFunction
	rtcSetGeometryIntersectFunction
	rtcSetGeometryOccludedFunction
	rtcSetGeometryPointQueryFunction
	rtcSetGeometryInstancedScene
	rtcSetGeometryTransform
	rtcGetGeometryTransform
	rtcSetGeometryTessellationRate
	rtcSetGeometryTopologyCount
	rtcSetGeometrySubdivisionMode
	rtcSetGeometryVertexAttributeTopology
	rtcSetGeometryDisplacementFunction
	rtcGetGeometryFirstHalfEdge
	rtcGetGeometryFace
	rtcGetGeometryNextHalfEdge
	rtcGetGeometryPreviousHalfEdge
	rtcGetGeometryOppositeHalfEdge
	rtcInterpolate
	rtcInterpolateN
	rtcNewBuffer
	rtcNewSharedBuffer
	rtcRetainBuffer
	rtcReleaseBuffer
	rtcGetBufferData
	RTCRay
	RTCHit
	RTCRayHit
	RTCRayN
	RTCHitN
	RTCRayHitN
	rtcInitIntersectContext
	rtcIntersect1
	rtcOccluded1
	rtcIntersect4/8/16
	rtcOccluded4/8/16
	rtcIntersect1M
	rtcOccluded1M
	rtcIntersect1Mp
	rtcOccluded1Mp
	rtcIntersectNM
	rtcOccludedNM
	rtcIntersectNp
	rtcOccludedNp
	rtcInitPointQueryContext
	rtcNewBVH
	rtcRetainBVH
	rtcReleaseBVH
	rtcBuildBVH

	Performance Recommendations
	MXCSR control and status register
	Thread Creation and Affinity Settings
	Fast Coherent Rays
	Huge Page Support
	Huge Pages under Linux
	Huge Pages under Windows
	Huge Pages under macOS

	Avoid store-to-load forwarding issues with single rays

	Embree Tutorials
	Minimal
	Triangle Geometry
	Dynamic Scene
	User Geometry
	Viewer
	Stream Viewer
	Intersection Filter
	Instanced Geometry
	Multi Level Instancing
	Path Tracer
	Hair
	Curve Geometry
	Subdivision Geometry
	Displacement Geometry
	Grid Geometry
	Point Geometry
	Motion Blur Geometry
	Interpolation
	Closest Point
	Voronoi
	BVH Builder
	BVH Access
	Find Embree

