
SOLSTICE ABG
(Absolute Beginner’s Guide)

February 16, 2022

Méso-Star (https://www.meso-star.com)

1

https://www.meso-star.com

Contents

1 Introduction 3

2 First steps: performing a very simple computation 4

3 Tweaking the first example 9
3.1 Solar disk models . 12
3.2 Surface properties of materials . 13
3.3 Rotating and translating geometric elements . 16
3.4 Geometric shapes . 16
3.5 Pivots . 16

4 A more complex example 22

5 Post-processing tools 31
5.1 solppraw . 31
5.2 solmaps . 33
5.3 solpaths . 33
5.4 solpp . 33

2

1 Introduction

Solstice is a scientific software that computes the power collected by a concentrated solar power plant.
The basic idea is that the user can provide the full geometry of the plant that will be used in the
numerical simulation: the shape, position and spectral properties of each reflector must be provided,
but the user can also provide a description of additional structural elements, such as mounting systems,
through the definition of materials. The most basic solar plant should consist of at least one primary
reflector and one receiver, but there is actually no limit on the number of reflectors (primary or not)
and receivers that can be specified.

Solstice uses the Monte-Carlo method: the full trajectory of a given number of solar rays is
randomly sampled, and the results of this statistical sampling is used to provide various results and the
statistical uncertainty over each one of these results. Solstice performs only the direct computation
of the concentrated solar power, for a given solar plant geometry. It does not to perform a automatic
optimisation of the solar plant’s design with respect to a given criteria, even if the direct computation
can provide some insight for design purposes.

The code will not only evaluate the total concentrated power for each specified receiver, but also
various losses: losses due to the cosine effect, shadowing of primary reflectors, absorption by materials
(via imperfect reflectors or semi-transparent solids) and by the atmosphere. These losses are computed
(with a statistical uncertainty) for each receiver, and for each primary reflector.

In terms of user interface, solstice is used as any Linux system command: from the command line.
Input can be specified via various files and command-line options. Output is provided in the terminal,
but as for any command-line tool, it can be written into output files for subsequent use.

This guide is aiming at providing a minimal support for the complete beginner. However, some
knowledge about using a Linux system and a terminal is required. We also assume solstice was suc-
cessfully installed and is ready to use. This guide was written for version 0.7.1 of solstice; however,
input and output formatting should be very similar for subsequent versions. From version 0.4.0, instal-
lation is very easy since the pre-compiled package can be downloaded; the installation can be checked
by issuing the ”solstice -h” command.

One final but important note is that the user should not expect to obtain numerical values exactly
similar to the various numerical results that are provided for the tests that are mentioned in this
document. solstice results are expected to be different on different machines/systems due to different
random number sequences. However, results should not differ by much, and should at least be within
the range defined by numerical uncertainties.

3

2 First steps: performing a very simple computation

In this section, the user will be guided through the various steps required for the most basic computa-
tions. This will be a good excuse to introduce the various concepts used in solstice.

First, open a terminal. You will then have to set some environment variables in order to use the
required version of solstice: in order to do that, you have to navigate to the /etc directory of the
solstice version that you want to use, and then source the ”solstice.profile” file; for instance:

1 cd So l s t i c e −0.7.1−GNU−Linux64/ e tc
2 source . / s o l s t i c e . p r o f i l e

You can check that the relevant environment variables have been set accordingly:

1 echo $PATH

should return something similar to:

1 /home/ s t a r l o r d / s o l s t i c e / S o l s t i c e −0.7.1−GNU−Linux64/bin : / usr / l o c a l / sb in : / usr / l o c a l / bin : /
usr / sb in : / usr / bin : / sb in : / bin : / usr /games : / usr / l o c a l /games

What matters is that the ”Solstice-0.7.1-GNU-Linux64/bin” directory is listed in this variable; similarly
for the LD LIBRARY PATH variable:

1 echo $LD LIBRARY PATH

should look like:

1 /home/ s t a r l o r d / s o l s t i c e / S o l s t i c e −0.7.1−GNU−Linux64/ l i b :

The ”Solstice-0.7.1-GNU-Linux64/lib” directory has to be listed.
This step (sourcing the ”solstice.profile” file) must be repeated every time a terminal window is

opened for using solstice. You can check everything works as intended by running the ”solstice –
version” command (no matter the directory you run this command into, since the $PATH variable
should now be set), and the result should be consistent with the solstice version you chose to use.

You can now run the following command:

1 s o l s t i c e −h

This should display the basic help about the solstice command.
Additional information can be found in the man pages for solstice; the following command:

1 man s o l s t i c e

will display the main man page for solstice; as mentioned at the very end of this man page,
additional man pages are available in order to describe the input syntax (man solstice-input), the
output format (man solstice-output) and the syntax used to declare receivers (man solstice-receivers).

The purpose of this guide is to provide enough examples so that the inexperienced user may be able
to explore solstice man pages, that are much more complete than the present document.

Instead of describing in more detail the list of possible solstice options, we are going to focus on
the following example command:

1 s o l s t i c e −D 0 ,90 −R r e c e i v e r . yaml geometry . yaml

Now, using the output of the solstice help command, it is easy to see that:

4

• the ”-D” option is used to specify a main solar direction. The two subsequent numerical values
are the azimuthal and zenithal directions (in degrees, see figure 1).

• the ”-R” option tells solstice that the receiver is defined in the ”receiver.yaml” input file.

• the ”geometry.yaml” file is the input file where the geometry of the solar plant is provided; no
command-line option is necessary to specify this is a geometry file.

In this example, two input files are used; they contain information that uses the YAML specifica-
tions. In this example, these two files contain the following information:

The ”geometry.yaml” file:

1 − sun :
2 dni : 1
3
4 − en t i t y :
5 name : r e f l e c t o r
6 primary : 1
7 trans form :
8 r o t a t i on : [−45 , 0 , 0]
9 t r a n s l a t i o n : [0 , 0 , 0]

10 geometry :
11 − mate r i a l :
12 back :
13 mirror : { r e f l e c t i v i t y : 1 . 0 , s l o p e e r r o r : 0}
14 f r on t :
15 mirror : { r e f l e c t i v i t y : 1 . 0 , s l o p e e r r o r : 0}
16 plane :
17 c l i p :
18 − opera t ion : AND
19 v e r t i c e s :
20 − [−0.5 , −0.5]
21 − [−0.5 , 0 . 5]
22 − [0 . 5 , 0 . 5]
23 − [0 . 5 , −0 .5]
24
25 − en t i t y :
26 name : t a r g e t
27 primary : 0
28 trans form :
29 r o t a t i on : [9 0 , 0 , 0]
30 t r a n s l a t i o n : [0 , 10 , 0]
31 geometry :
32 − mate r i a l :
33 back :
34 matte : { r e f l e c t i v i t y : 0}
35 f r on t :
36 matte : { r e f l e c t i v i t y : 0}
37 plane :
38 s l i c e s : 20
39 c l i p :
40 − opera t ion : AND
41 v e r t i c e s :

5

./source_files/receiver.yaml
./source_files/geometry.yaml
./source_files/geometry.yaml

42 − [−5.0 , −5.0]
43 − [−5.0 , 5 . 0]
44 − [5 . 0 , 5 . 0]
45 − [5 . 0 , −5.0]

And the ”receiver.yaml” file:

1 − name : t a r g e t
2 s i d e : FRONTANDBACK

These files provide an example of how the definition of the solar plant is structured. As shown in
the geometry file, several elements are declared: the sun (with label ”sun”) and two entities (”reflector”
and ”target”). Finally, within the ”receiver.yaml” file, the receiver is defined as the ”target” entity.
Let us give some more details about these two files:

• The only mandatory parameter for the definition of the sun is its DNI. The spectral distribution
of energy can be specified (further examples will show how). Also, a model of the solar disk can
be specified, as mentioned in the solstice-input man page: both a pillbox model and the Buie
model are available. When no specific sun disk model is specified, all incoming solar radiation
comes from the provided main solar direction (collimated radiation).

• The ”reflector” entity is defined as a horizontal unit square whose center is (0,0). It is defined
from the clipping of the z=0 plane: the AND clipping operation means only the square is retained.
Alternatively, the clipping operation could be SUB, which would result in a square hole. When
using planes, the default is to perform various operations on the horizontal (z=0) plane. Then the
resulting shapes can be translated and rotated over each axis, which is the case in this example:
the square is rotated by 45◦ around the X-axis. The ”reflector” entity uses a material whose
properties are defined for each face: in this example, both faces have a total reflectivity and a
null slope error (perfect specular mirror). Finally, the ”reflector” entity is defined as a primary
reflector: primary geometries are the ones that receive solar radiation, and thus constitute the
beginning of each optical path.

• Similarly, the ”target” geometric template defines a initially horizontal square of length 10, whose
center is (0,0). This square is later both rotated by 90◦ around the X-axis and translated to the
(x=0, y=10, z=0) position. The material used in the definition of this template is black (null
reflectivity) on both faces. This entity is subsequently defined as the main receiver within the
”receiver.yaml” file.

The ”solar plant” that is described in these two files consists therefore in a 1 square meter perfect
reflector plane tilted at 45◦, that redirects the incoming solar radiation towards a vertical black bigger
square receiver. All incoming sun rays come from the zenith (90◦ above the horizon) will hit the
reflector. We can expect that, since the DNI is 1 W/m2 and the projected surface of the reflector along
the incoming sunlight direction is 1/

√
2 m2, there is 1/

√
2 watt of incoming radiative power at the

surface of the reflector. Since it is a perfect mirror, all rays should bounce back along the horizontal
and hit the receptor. The receptor will be hit by 1/

√
2 watt of power on its front face: the front face of

the initial (horizontal) square is its upper face. When this square is rotated by 90◦ around the X-axis,
its upper face is now facing the reflector.

Let us make the computation using solstice and check it provides the expected results:

6

./source_files/receiver.yaml
./source_files/receiver.yaml
./source_files/receiver.yaml

1 s o l s t i c e −D 0 ,90 −R r e c e i v e r . yaml geometry . yaml

This command should provide the following output:

1 #−−− Sun d i r e c t i o n : 0 90 (−6.12323e−17 −0 −1)
2 7 1 1 10000 0
3 1 0
4 0.707107 0
5 0.707107 0
6 0 0
7 0 0
8 0 0
9 0 0

10 ta r g e t 2 100 0.707107 0 0.707107 0 0.707107 0 0 0 0 0 0.707107 0 0.707107
0 0.707107 0 0 0 0 0 0.707107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

11 r e f l e c t o r 6 1 10000 0.707107 0 0 0
12 2 6 0.707107 0 0.707107 0 0.707107 0 0 0 0 0 0.707107 0 0.707107 0

0.707107 0

As indicated in the solstice-output man-page, this output must be read as follows:

• The first line recalls the provided sun direction. This is a particular case, since we provided only
one incoming sun direction: we could have provided as many as required, and the whole above
output information set would have been produced for each sun direction.

• On the second line, the 7 indicates how many global results have been computed (lines 3 to 9).
Then is recalls the number of receivers (only 1 in our case), the number of primary reflectors (also
1), the default number of statistical realisations (10000) since we did not provide it explicitly,
and the number of realisations that have failed due to numerical precision issues (0).

• The next seven lines (3 to 9) provide the numerical values of the global results:

1. the potential flux (W) incoming on all receivers if they were optimally oriented (in this case,
the receiver would be optimally oriented if it had been left horizontal). Two values are
provided: the potential flux (1 W) and its numerical uncertainty (0 W). The result should
then be read as 1 W ± 0 W.

2. the flux absorbed by all receivers: 0.707107 W ± 0 W.

3. the cos factor: 0.707107 ± 0; it is defined as the average (over the surface of all primary
reflectors) cosinus of the angle between the incoming solar radiation and the normal of
primary reflectors.

4. shadow losses: 0 W ± 0 W; this is the total flux that does not reach primary reflectors due
to shadowing of these reflectors. In our case, there is none.

5. missing losses: 0 W ± 0 W; this is the flux that reached primary reflectors, is reflected,
not absorbed by any solid (when reflected or transmitted) or by the atmosphere, but is not
finally absorbed by receivers. In this very simple first example, no path misses the receiver.

6. reflectivity losses: 0 W ± 0 W; this is the flux that has been absorbed by elements other
that receivers (both solid surfaces and solid volumes such as semi-transparent materials).

7

7. absorptivity losses: 0 W ± 0 W; this is the flux that is absorbed by the atmosphere on the
path from a primary reflector to a receiver. Since we did not provide any information about
atmospheric absorptivity, this value is null.

• Then one line of results is provided for each receiver (in this case, only one: line number 10).
It provides the name of the receiver, its ID, its area in square meters, then 11x2 sets of results
(result and its numerical uncertainty) for each side of the receiver (front and back). These 11 sets
of results, for each side, are the following:

1. incoming flux over the receiver’s side

2. incoming flux over the receiver’s side if no absorption occurs in materials

3. incoming flux over the receiver’s side if no extinction occurs in the atmosphere

4. flux removed because of absorption in materials

5. flux removed because of extinction in the atmosphere

6. the flux that was absorbed by the receiver’s side

7. the flux that would be absorbed by the receiver’s side if no absorption occurs in materials

8. the flux that would be absorbed by the receiver’s side if no extinction occurs in the atmo-
sphere

9. flux that has not been absorbed by the receiver’s side because of absorption by materials

10. flux that has not been absorbed by the receiver’s side because of extinction by the atmosphere

11. global efficiency: the fraction of the potential flux that was absorbed by the receiver’s side

In this case, these results are null (0 ± 0 watts) for the back side since radiation is absorbed
once it reaches the front side: as expected, a total of 0.707107 watt reached the front side of the
receiver, and all of it was absorbed because of the perfectly absorbing receiver, and nothing was
lost because of absorption by imperfect reflectors, semi-transparent materials or the atmosphere.

• One line is then provided for each primary entity (one in our case: line number 11); it provides
the name of the primary reflector, its ID, its area in square meters, the number of statistical
realisations that have been sampled on this reflector, and two sets of results for this primary
reflector:

1. the cos-factor of the reflector (0.707107 ± 0): average, over the surface of the reflector, of
the cosinus of the angle between the direction of incoming radiation and the local normal to
the surface.

2. shadow losses of the reflector (0 ± 0): flux that did not reach the reflector because of primary
reflectors shadowing.

• Finally, one line is provided for each (receiver / primary reflector) couple. In our case, since there
are only one receiver and one primary reflector, there is only one such line (line 12). It provides
the ID of the receiver, the ID of the primary reflector, and 10 sets of results per receiver’s side
(front / back):

1. incoming flux over the receiver’s side, coming from the reflector

8

2. incoming flux over the receiver’s side if no absorption occurs in materials, coming from the
reflector

3. incoming flux over the receiver’s side if no extinction occurs in the atmosphere, coming from
the reflector

4. flux removed because of absorption in materials, coming from the reflector

5. flux removed because of extinction in the atmosphere, coming from the reflector

6. the flux that was absorbed by the receiver’s side, coming from the reflector

7. the flux that would be absorbed by the receiver’s side if no absorption occurs in materials,
coming from the reflector

8. the flux that would be absorbed by the receiver’s side if no extinction occurs in the atmo-
sphere, coming from the reflector

9. flux that has not been absorbed by the receiver’s side because of absorption by materials,
coming from the reflector

10. flux that has not been absorbed by the receiver’s side because of extinction by the atmo-
sphere, coming from the reflector

In this case, only front results are non-null: as expected, all the reflected power (0.707107 watt)
effectively reached the front side of the receiver, and all of it was absorbed. Nothing was absorbed
by solid surfaces or semi-transparent materials, and nothing was absorbed by the atmosphere.

Solstice can be used in order to generate a 3D model of the geometry, using the ”-g” flag. Try
using the following command:

1 s o l s t i c e −n 100 −g format=obj −t1 −D 0 ,90 −R r e c e i v e r . yaml geometry . yaml > geom . obj

This will produce the ”geom.obj” file that can subsequently be visualised by any software that can
render .obj files (such as meshlab). Figure 2 provides a visualisation of the corresponding 3D model.

Finally, solstice can produce a visualisation of a given number of sunlight ray paths (for instance
100), using the following command:

1 s o l s t i c e −n 100 −p de f au l t −t1 −D 0 ,90 −R r e c e i v e r . yaml geometry . yaml | more +1 > rays .
vtk

This produces the ”rays.vtk” output file, that can be used by paraview (together with the previously
produced ”geom.obj” file) in order to produce figure 3. In this second figure, both the reflector and
the receiver can be seen, along with the required 100 light paths (randomly sampled over the primary
reflector): since the incoming and the reflection directions are identical, they can not be distinguished
on this figure. However, blue paths are the ones that effectively reach a receiver.

3 Tweaking the first example

We will now experiment small variations of the example provided in section 2 in order to learn how to
solve more complex problems.

9

Figure 1: Definition of the zenithal and azimuthal angles

Figure 2: 3D model of the geometry used in the first example

10

Figure 3: 3D visualisation of 100 ray paths in the first example

11

3.1 Solar disk models

The default model of the solar disk is that there is no solar disk: all incoming sunlight comes from the
specified sun direction. You can alternatively use two different solar disk models: the pillbox model
and the Buie model.

Try replacing the ”sun” section in the ”geometry.yaml” file by the following lines:

1 − sun : &sun
2 dni : 1
3 p i l l b o x :
4 h a l f a n g l e : 0 .265
5 spectrum : [{ wavelength : 1 , data : 1}]

In this example, we tell solstice to use the pillbox model with an solar disk half-angle of 0.265◦: the
solar disk is now considered as a surface located at the end of a cone of 0.265◦ half-angle, with a uniform
flux. The ”spectrum” attribute is optional, it could be removed in this example. Section 4 will describe
how to use more complex spectra.

Then run the solstice computation again, with the same main solar direction:

1 s o l s t i c e −D 0 ,90 −R r e c e i v e r . yaml geometry . yaml

Produces:

1 #−−− Sun d i r e c t i o n : 0 90 (−6.12323e−17 −0 −1)
2 7 1 1 10000 0
3 1 0
4 0.70706 3.27131 e−05
5 0.707107 0
6 0 0
7 0 0
8 0 0
9 0 0

10 ta r g e t 2 100 0.70706 3.27131 e−05 0.70706 3.27131 e−05 0.70706 3.27131 e−05 0 0
0 0 0.70706 3.27131 e−05 0.70706 3.27131 e−05 0.70706 3.27131 e−05 0 0 0 0

0.70706 3.27131 e−05 0
0 0

11 r e f l e c t o r 6 1 10000 0.707107 0 0 0
12 2 6 0.70706 3.27131 e−05 0.70706 3.27131 e−05 0.70706 3.27131 e−05 0 0 0 0

0.70706 3.27131 e−05 0.70706 3.27131 e−05 0.70706 3.27131 e−05 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The main difference with the first set of results is that the computed power (incoming on the
reflector, absorbed by the front face of the receiver) is computed with a non-null standard deviation.
The direction of incoming solar radiation is now sampled within a small solid angle centered on the
main solar direction.

We can also use the Buie model (presented in [1]). For instance, try replacing the ”sun” section in
the ”geometry.yaml” file by the following lines:

1 − sun : &sun
2 dni : 1
3 buie :
4 c s r : 0 . 1
5 spectrum : [{ wavelength : 1 , data : 1}]

12

./source_files/geometry.yaml
./source_files/geometry.yaml

We have now specified the use of the Buie model, using a circumsolar ratio of 0.1; the distribution
of solar flux varies with the position of emission along the solar disk, and a circumsolar ring due to
atmospheric scattering is also taken into consideration. The output of solstice in this case is the
following:

1 #−−− Sun d i r e c t i o n : 0 90 (−6.12323e−17 −0 −1)
2 7 1 1 10000 0
3 1 0
4 0.707098 3.02362 e−05
5 0.707107 0
6 0 0
7 0 0
8 0 0
9 0 0

10 ta r g e t 2 100 0.707098 3.02362 e−05 0.707098 3.02362 e−05 0.707098 3.02362 e−05 0 0
0 0 0.707098 3.02362 e−05 0.707098 3.02362 e−05 0.707098 3.02362 e−05 0 0

0 0 0.707098 3.02362 e−05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

11 r e f l e c t o r 6 1 10000 0.707107 0 0 0
12 2 6 0.707098 3.02362 e−05 0.707098 3.02362 e−05 0.707098 3.02362 e−05 0 0 0 0

0.707098 3.02362 e−05 0.707098 3.02362 e−05 0.707098 3.02362 e−05 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Once again, the dispersion of incoming sunlight directions translates only in a modification of the
cos-factor and the total power that is absorbed by the receiver.

3.2 Surface properties of materials

In the first example, the definition of the material was embedded in the definition of the reflector. Is is
possible to define surface properties independently of entities. For instance, let us create a ”material”
section in the ”geometry.yaml” file, prior to the definition of entities:

1 − mate r i a l : &custom
2 mirror : { r e f l e c t i v i t y : 0 . 75 , s l o p e e r r o r : 0 }

The primary reflector must also be modified in order to use the ”custom” material:

1 − en t i t y :
2 name : r e f l e c t o r
3 primary : 1
4 trans form :
5 r o t a t i on : [−45 , 0 , 0]
6 t r a n s l a t i o n : [0 , 0 , 0]
7 geometry :
8 − mate r i a l : ∗custom
9 plane :

10 c l i p :
11 − opera t ion : AND
12 v e r t i c e s :
13 − [−0.5 , −0.5]
14 − [−0.5 , 0 . 5]
15 − [0 . 5 , 0 . 5]
16 − [0 . 5 , −0 .5]

13

./source_files/geometry.yaml

Figure 4: 3D visualisation of 100 ray paths in the example of a custom material with reflectivity=0.75
and slope error=0.5

14

This mechanism provides the possibility to define the surface properties of as many materials as
required, and to easily switch materials within the definition of the various entities.

The output of the solstice computation is now:

1 #−−− Sun d i r e c t i o n : 0 90 (−6.12323e−17 −0 −1)
2 7 1 1 10000 0
3 1 0
4 0.53033 8 .0934 e−10
5 0.707107 0
6 0 0
7 0 0
8 0.176777 0
9 0 0

10 ta r g e t 2 100 0.53033 8 .0934 e−10 0.707107 0 0.53033 8 .0934 e−10 0.176777 0 0 0
0.53033 8 .0934 e−10 0.707107 0 0.53033 8 .0934 e−10 0.176777 0 0 0 0.53033

8 .0934 e−10 0
11 r e f l e c t o r 6 1 10000 0.707107 0 0 0
12 2 6 0.53033 8 .0934 e−10 0.707107 0 0.53033 8 .0934 e−10 0.176777 0 0 0 0.53033

8 .0934 e−10 0.707107 0 0.53033 8 .0934 e−10 0.176777 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

Using a reflectivity of 0.75 instead of 1 has no consequence of the cos-factor, but the power that is
absorbed by the receiver is now 0.53033±0 watts. We can also see that 0.176777±0 watts have been
absorbed by the reflector due to its partial reflectivity (within the global results, in the results line for
the receiver and the results line for the receiver/reflector couple).

We can also modify the value of the ”slope error” parameter in the properties of our ”custom”
material; let us give it a non-null value:

1 − mate r i a l : &custom
2 mirror : { r e f l e c t i v i t y : 0 . 75 , s l o p e e r r o r : 0 . 5 }

This ”slope error” parameter controls the reflection BRDF. We can see a clear effect on computation
results:

1 #−−− Sun d i r e c t i o n : 0 90 (−6.12323e−17 −0 −1)
2 7 1 1 10000 0
3 1 0
4 0.0974216 0.00205313
5 0.707107 0
6 0 0
7 0.398702 0.00197221
8 0.210983 0.000580094
9 0 0

10 ta r g e t 2 100 0.0974216 0.00205313 0.129966 0.00273877 0.0974216 0.00205313
0.0325446 0.000686322 0 0 0.0974216 0.00205313 0.129966 0.00273877
0.0974216 0.00205313 0.0325446 0.000686322 0 0 0.0974216 0.00205313 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 r e f l e c t o r 6 1 10000 0.707107 0 0 0
12 2 6 0.0974216 0.00205313 0.129966 0.00273877 0.0974216 0.00205313 0.0325446

0.000686322 0 0 0.0974216 0.00205313 0.129966 0.00273877 0.0974216
0.00205313 0.0325446 0.000686322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

15

The power that reaches the receiver’s back face is now significantly lower than the initial 0.707107
watts, and now the flux lost to the environment (missing-loss) is non-null. Also, the additional flux that
could have been absorbed by the receiver if the mirror was a perfect reflector is 3.25446e-2 ± 6.86322e-4
watts. As can be seen in figure 4, reflection directions are scattered over the upper hemisphere, and
some rays are not reflected in the direction of the receiver (turquoise rays).

3.3 Rotating and translating geometric elements

As can be seen in the ”geometry.yaml” file, a ”transform” section can be added to the definition of
any given entity in order to apply a rotation of an arbitrary angle around each axis, and also to apply
a arbitrary translation along each axis. Positioning geometries in space is pretty straightforward from
the provided example.

3.4 Geometric shapes

As mentioned in the solstice-input man page, the following geometric shapes can be defined in solstice:
cuboids, cylinders, spheres, hemispheres, planes, paraboloids, hyperboloids, parabolic cylinders. There
is also the possibility to include geometries that are defined using the STL format. Furthermore,
clipping operations can be performed over parametric shapes (hemispheres, paraboloids, hyperboloids,
parabolic cylinders and planes): this was the case throughout all previous examples, when defining the
two squares from a original plane.

The user should refer to the man pages that provide extensive documentation on the way these
shapes can be defined. We will use various shapes in the following examples.

3.5 Pivots

Pivots provide the possibility to automatically rotate a given geometry in order to reflect incoming
sunlight toward a given position. In solstice, two types of pivots are defined: the x pivot and the
zx pivot. A example showing how to use both types will be provided.

The x pivot makes possible a rotation of a geometry around the X-axis only. It is easy to define
any direction as the rotation axis of the pivot by first applying a rotation to the pivot. Let us take the
example of the following ”self oriented parabol.yaml” file:

1 − sun : &sun
2 dni : 1
3 spectrum : [{ wavelength : 1 , data : 1}]
4
5 − mate r i a l : &specu l a r
6 mirror : { r e f l e c t i v i t y : 1 , s l o p e e r r o r : 0 }
7
8 − mate r i a l : &black
9 matte : { r e f l e c t i v i t y : 0 }

10
11 − template : &s e l f o r i e n t e d p a r a b o l
12 name : "so_parabol"

13 trans form : { t r a n s l a t i o n : [0 , 0 , 4] , r o t a t i on : [0 , 0 , 90] }
14 x p ivo t :
15 r e f p o i n t : [0 , 0 , 0]

16

./source_files/geometry.yaml
./source_files/self_oriented_parabol.yaml

16 ta r g e t : { sun : ∗ sun }
17 ch i l d r en :
18 − name : "parabol"

19 primary : 1
20 geometry :
21 − mate r i a l : ∗ sp e cu l a r
22 parabol :
23 f o c a l : 4
24 c l i p :
25 − opera t ion : AND
26 v e r t i c e s : [[−5 .0 , −5.0] , [−5.0 , 5 . 0] ,
27 [5 . 0 , 5 . 0] , [5 . 0 , −5 .0]]
28 − name : "small_square"

29 trans form : { t r a n s l a t i o n : [0 , 0 , 4] }
30 primary : 0
31 geometry :
32 − mate r i a l : ∗black
33 plane :
34 c l i p :
35 − opera t ion : AND
36 v e r t i c e s : [[−0 .50 , −0.50] , [−0.50 , 0 . 5 0] ,
37 [0 . 5 0 , 0 . 5 0] , [0 . 5 0 , −0 .50]]
38
39 − en t i t y :
40 name : "reflector"

41 trans form : { r o t a t i on : [0 , 0 , 0] , t r a n s l a t i o n : [0 , 0 , 0] }
42 ch i l d r en : [∗ s e l f o r i e n t e d p a r a b o l]

In this file, the ”self oriented parabol” geometric template is constructed first by defining a global
transform over the whole template: it will be globally translated by the [0 0 4] vector and rotated by
an angle of 90◦ around the Z-axis. The purpose of this rotation is to change the rotation axis of the
pivot from the X-axis to the Y-axis. Then the x pivot is defined as the first element of the template.
Its target is defined as the sun: the result is that the normal of the paraboloid will be rotated (within
the limits of a single-axis pivot) so that it matches with the sun direction. Then a children to the pivot
is defined: its geometric shape is a paraboloid, that is clipped by a square of length 10 centered around
the Z-axis. It uses the ”specular” material that is defined at the top of the file, and is defined as a
primary reflector. Then a square of length 1 is defined, with a initial translation of 4 along the Z-axis.
It uses the ”black” material defined at the top of the file, and is not a primary reflector. Finally, a
”reflector” entity is defined using the ”self oriented parabol” template.

In this example, here is how things work when solstice parses this file: the paraboloid is created
with its initial axis of symmetry along the Z-axis. The ”small square” geometry will be located at
an altitude of 4 in the local referential of the paraboloid: the center of this square is then located at
the focal point of the paraboloid. Finally, the whole geometry is translated by the [0 0 4] vector and
rotated by 90◦ around the Z-axis.

In order to perform the solstice computation, we also need the following ”parabol receiver.yaml”
file:

1 − { name : "reflector.so_parabol.small_square" , s i d e : BACK }

This file provides the path of the geometry that is used as a receiver in the yaml tree of the geometry
file, and it is specified that only the back side of this geometry is used to receive some power.

17

./source_files/parabol_receiver.yaml

Figure 5: 3D visualisation of 100 ray paths in the example of a 45◦ sun direction, and a receiver that
is located at the focal point of a self-oriented paraboloid pointing at the sun.

18

We can finally perform the computation:

1 s o l s t i c e −D 0 ,45 −R pa r abo l r e c e i v e r . yaml s e l f o r i e n t e d p a r a b o l . yaml

with the following result:

1 #−−− Sun d i r e c t i o n : 0 45 (−0.707107 −0 −0.707107)
2 7 1 1 10000 0
3 111 .97 0
4 98 .81 0.108436
5 0.893096 0
6 1 .19 0.108436
7 0 0
8 0 0
9 0 0

10 r e f l e c t o r . s o parabo l . sma l l squa r e 6 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 98 .81 0.108436 98 .81 0.108436 98 .81

0.108436 0 0 0 0 98 .81 0.108436 98 .81 0.108436 98 .81 0.108436 0 0 0 0
0.882468 0.000968438

11 r e f l e c t o r . s o parabo l . parabol 2 111 .97 10000 0.893096 0 1 .19 0.108436
12 6 2 −1

98 .81 0.108436 98 .81 0.108436 98 .81 0.108436 0 0 0 0 98 .81 0.108436
98 .81 0.108436 98 .81 0.108436 0 0 0 0

Over the 111.97±0 watts incoming on the surface of the paraboloid, only 98.81±0.108 watts are
focused on the receiver: this is partly due to a cos-factor different from 1 (the potential flux is 111.97
watts because the DNI is 1 watt per square meter, and the surface of the paraboloid is 111.97 square
meters; however, because of the curvature of the paraboloid, it intercepts only 100 watts: 111.97*cos-
factor), and to the fact that 1.19±0.108 watts are lost because of the shadow that the receiver casts on
the paraboloid. No power is lost by the receiver and there are no reflectivity losses due to absorption.
Figure 5 provides a visualisation of the scene.

The zx pivot makes possible a rotation around two perpendicular axis. In the following ”two
reflectors one receiver.yaml” file, two paraboloids are defined from the same ”self oriented parabol”
geometric template (a paraboloid with a focal distance of 100 meters). These two reflectors are located
at different spatial directions, and reflect radiation back to a common square receiver.

1 − sun : &sun
2 dni : 1
3 spectrum : [{ wavelength : 1 , data : 1}]
4 # Possibility to provide as many wavelength values (and corresponding

5 # solar irradiance at ground level) as required, in order to

6 # take into account the spectral dependence to the solar emission

7 # and atmosphere absorption.

8
9 # Definition of materials

10 − mate r i a l : &lambert ian
11 f r on t :
12 matte : { r e f l e c t i v i t y : 1 }
13 back :
14 matte : { r e f l e c t i v i t y : 1 }
15
16 − mate r i a l : &specu l a r
17 mirror : { r e f l e c t i v i t y : 1 , s l o p e e r r o r : 0 }

19

./source_files/two_reflectors_one_receiver.yaml
./source_files/two_reflectors_one_receiver.yaml

18
19 − mate r i a l : &black
20 matte : { r e f l e c t i v i t y : 0 }
21
22 # Definition of the "small_square" geometry that will be used

23 # by the receiver

24 − geometry : &sma l l squa r e
25 − mate r i a l : ∗black
26 plane :
27 c l i p :
28 − opera t ion : AND
29 v e r t i c e s :
30 − [−0.50 , −0.50]
31 − [−0.50 , 0 . 5 0]
32 − [0 . 5 0 , 0 . 5 0]
33 − [0 . 5 0 , −0.50]
34
35 # Definition of the receiver’s entity.

36 − en t i t y :
37 name : "square_receiver"

38 primary : 0
39 # set "primary" to 0 because this entity should not the sampled

40 # as a primary reflector

41 trans form : { r o t a t i on : [0 , 90 , 0] , t r a n s l a t i o n : [100 , 0 , 10] }
42 # The "small_square" geometry is created as horizontal. In order to

43 # have it vertical, a rotation of 90 degrees around the Y-axis

44 # must be performed.

45 # Also, a translation is applied in order to position it in space.

46 anchors :
47 − name : "anchor0"

48 po s i t i o n : [0 , 0 , 0]
49 # An anchor is defined, at a local position (in the referential of

50 # the square)

51 geometry : ∗ sma l l squa r e
52
53
54 # Definition of a geometry template for primary reflectors (parabol)

55 − template : &s e l f o r i e n t e d p a r a b o l
56 name : "so_parabol"

57 trans form : { t r a n s l a t i o n : [0 , 0 , 4] , r o t a t i on : [0 , 0 , 90] }
58 # The 90-degrees rotation around the Z-axis is required so that the

59 # pivot rotates around the Y-axis and not the X-axis.

60 zx p ivo t :
61 r e f p o i n t : [0 , 0 , 0]
62 t a r g e t : { anchor : s q u a r e r e c e i v e r . anchor0 }
63 # the target is the anchor that was previously defined in

64 # the receiver’s entity (the center of the square)

65 ch i l d r en :
66 − name : "parabol"

67 trans form : { r o t a t i on : [−90 , 0 , 0] , t r a n s l a t i o n : [0 , 0 , 0] }
68 # This -90-degrees rotation over the X-axis is required because:

69 # - the parabol is generated "horizontal": its central axis is the Z-axis

70 # - the automatic orientation of the parabol will be performed so that

71 # the Y-axis is the local normal of the specular reflexion @ ref_point

20

72 # - a 90-degrees rotation around the Z-axis is applied

73 # => in order to make the X-axis the local normal of specular reflexion ,

74 # the parabol must be rotated by -90-degrees around X and then

75 # by 90-degrees around Z.

76 primary : 1 # primary=1 -> sampled for integration

77 geometry :
78 − mate r i a l : ∗ sp e cu l a r
79 parabol :
80 f o c a l : 100
81 c l i p :
82 − opera t ion : AND
83 v e r t i c e s : [[−5 .0 , −5.0] , [−5.0 , 5 . 0] , [5 . 0 , 5 . 0] , [5 . 0 , −5 .0]]
84
85 # Two identical parabols are placed at two different locations.

86 # Automatic orientation of the parabols so that a specular

87 # reflexion of the sun’s main direction at the center of the parabol

88 # is directed to the center of the receiver.

89 − en t i t y :
90 name : "reflector1"

91 trans form : { r o t a t i on : [0 , 0 , 0] , t r a n s l a t i o n : [0 , 0 , 0] }
92 ch i l d r en : [∗ s e l f o r i e n t e d p a r a b o l]
93
94 − en t i t y :
95 name : "reflector2"

96 trans form : { r o t a t i on : [0 , 0 , 0] , t r a n s l a t i o n : [1 0 , 43 . 6 , 0] }
97 ch i l d r en : [∗ s e l f o r i e n t e d p a r a b o l]

In this example, the same geometric template is used to define both primary reflectors: this
”self oriented parabol” uses a zx pivot in order to position each reflector so that radiation is sent
back to the center of the receiver (using the notion of anchor).

The following ”common receiver.yaml” file is used to define the receiver:

1 − { name : "square_receiver" , s i d e : BACK }

We can finally run solstice:

1 s o l s t i c e −n 100000 −t1 −D 0 ,45 −R common receiver . yaml tw o r e f l e c t o r s o n e r e c e i v e r . yaml

with the following result:

1 #−−− Sun d i r e c t i o n : 0 45 (−0.707107 −0 −0.707107)
2 7 1 2 100000 0
3 200 .04 0
4 176.935 0.121085
5 0.925156 3.46816 e−05
6 0 0
7 8.13302 0.119025
8 0 0
9 0 0

10 s qu a r e r e c e i v e r 2 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 176.935 0.121085 176.935 0.121085 176.935 0.121085 0
0 0 0 176.935 0.121085 176.935 0.121085 176.935 0.121085 0 0 0 0
0.884499 0.000605303

11 r e f l e c t o r 2 . s o parabo l . parabol 8 100 .02 50222 0.915688 2.58316 e−05 0 0
12 r e f l e c t o r 1 . s o parabo l . parabol 6 100 .02 49778 0.934708 2.29155 e−05 0 0

21

./source_files/common_receiver.yaml

13 2 8 −1
83.8607 0.288723 83.8607 0.288723 83.8607 0.288723 0 0 0 0 83.8607
0.288723 83.8607 0.288723 83.8607 0.288723 0 0 0 0

14 2 6 −1
93.0744 0.295646 93.0744 0.295646 93.0744 0.295646 0 0 0 0 93.0744
0.295646 93.0744 0.295646 93.0744 0.295646 0 0 0 0

Within the solstice command, the ”-n 100000” option is used to explicitly specify the code will
have to sample 105 statistical realisations (in order to achieve a higher numerical accuracy), and the
”-t1” option tells the code to run the computation on 1 thread, even if by default it uses all available
threads.

Similarly to the previous example, only a fraction of the radiation available on the reflectors is
focused on the receiver. This is partly due to a cos-factor different from 1. And even if there is
no shadow over the reflectors, there is some power that is reflected but does not reach the receptor
(8.13±0.12 watts) because even if incoming sunlight is collimated, the sun direction does not match
the normal of the second paraboloid (”reflector2”).

Figure 6 provides a visualisation of the scene. We can see some turquoise paths that originate from
the ”reflector2” paraboloid.

4 A more complex example

The example provided in this section is not intended at describing a realistic solar plant. Instead, its
purpose is to use as many concepts as possible in the definition of the geometry.

In the following ”multiple reflectors.yaml” file, three primary reflectors made from parabolic sec-
tions, with different focal distances, focus incoming sunlight at a common point. This point happens
to be the upper focal point of a secondary reflector, in the shape of a hyperboloid (beam-down). Then
a receptor is located at the second focal position of the hyperboloid. But in this last part of the optical
path, a glass box has been placed. Figures 7 and 8 show the geometric configuration and optical paths
when the box is set to use two different refractive materials.

1 # Definition of spectra:

2 # spectrum of incoming sunlignt

3 − spectrum : &so la r spec t rum
4 − {wavelength : 0 . 30 , data : 1 .0}
5 − {wavelength : 0 . 40 , data : 2 .0}
6 − {wavelength : 0 . 50 , data : 0 .5}
7 − {wavelength : 0 . 60 , data : 3 .5}
8 − {wavelength : 0 . 70 , data : 1 .5}
9 − {wavelength : 0 . 80 , data : 0 .8}

10 # spectrum of air absorption coefficient

11 − spectrum : &a i r kab s
12 − {wavelength : 0 . 30 , data : 1 . 0 e−4}
13 − {wavelength : 0 . 40 , data : 1 . 0 e−5}
14 − {wavelength : 0 . 50 , data : 2 . 0 e−5}
15 − {wavelength : 0 . 60 , data : 2 . 0 e−4}
16 − {wavelength : 0 . 70 , data : 3 . 0 e−5}
17 − {wavelength : 0 . 80 , data : 1 . 0 e−4}
18 # spectrum of glass absorption coefficient

19 − spectrum : &g l a s s kab s

22

./source_files/multiple_reflectors.yaml

Figure 6: 3D visualisation of 100 ray paths in the example of a 45◦ sun direction, and a receiver that
is located at the focal position of two paraboloids that are self-oriented using a zx pivot.

23

20 − {wavelength : 0 . 30 , data : 1 . 0 e−2}
21 − {wavelength : 0 . 40 , data : 1 . 0 e−3}
22 − {wavelength : 0 . 50 , data : 2 . 0 e−3}
23 − {wavelength : 0 . 60 , data : 2 . 0 e−2}
24 − {wavelength : 0 . 70 , data : 3 . 0 e−3}
25 − {wavelength : 0 . 80 , data : 1 . 0 e−3}
26 # spectrum of glass refractive index

27 − spectrum : &g l a s s r e f i n d e x
28 − {wavelength : 0 . 30 , data : 1 .40}
29 − {wavelength : 0 . 40 , data : 1 .39}
30 − {wavelength : 0 . 50 , data : 1 .37}
31 − {wavelength : 0 . 60 , data : 1 .34}
32 − {wavelength : 0 . 70 , data : 1 .30}
33 − {wavelength : 0 . 80 , data : 1 .25}
34
35 − sun : &sun
36 dni : 1
37 buie :
38 c s r : 0 .05
39 spectrum : ∗ so l a r spec t rum
40
41 # Definition of media

42 # medium: air

43 − medium : &air medium
44 r e f r a c t i v e i n d e x : 1
45 e x t i n c t i o n : ∗ a i r k ab s
46 # medium: glass

47 − medium : &glass medium
48 r e f r a c t i v e i n d e x : ∗ g l a s s r e f i n d e x
49 ex t i n c t i o n : ∗ g l a s s kab s
50
51 # Definition of materials

52 # lambertian reflection

53 − mate r i a l : &lambert ian
54 f r on t :
55 matte : { r e f l e c t i v i t y : 1 }
56 back :
57 matte : { r e f l e c t i v i t y : 1 }
58 # specular reflexion

59 − mate r i a l : &specu l a r
60 mirror : { r e f l e c t i v i t y : 1 , s l o p e e r r o r : 0 }
61 # blackbody (no reflexion)

62 − mate r i a l : &black
63 mirror : { r e f l e c t i v i t y : 0 , s l o p e e r r o r : 0 }
64 # thin glass: uses the "thin_dielectric" material

65 − mate r i a l : &t h i n g l a s s
66 t h i n d i e l e c t r i c :
67 th i ckne s s : 0 .001
68 medium i : ∗air medium
69 medium t : ∗glass medium
70 # glass: uses the "dielectric" material

71 − mate r i a l : &g l a s s
72 f r on t :
73 d i e l e c t r i c :

24

74 medium i : ∗air medium
75 medium t : ∗glass medium
76 back :
77 d i e l e c t r i c :
78 medium i : ∗glass medium
79 medium t : ∗air medium
80
81 # Definition of the "small_square" geometry that will be used

82 # by the receptor

83 − geometry : &sma l l squa r e
84 − mate r i a l : ∗black
85 plane :
86 c l i p :
87 − opera t ion : AND
88 v e r t i c e s :
89 − [−0.50 , −0.50]
90 − [−0.50 , 0 . 5 0]
91 − [0 . 5 0 , 0 . 5 0]
92 − [0 . 5 0 , −0.50]
93
94 # Definition of the "glass_box" geometry that will be used

95 # by the glass

96 − geometry : &g l a s s box
97 − mate r i a l : ∗ t h i n g l a s s
98 # - material: *glass

99 cuboid :
100 s i z e : [1 0 , 1 0 , 0 . 5]
101 trans form : { t r a n s l a t i o n : [0 , 0 , 0 . 2 5] }
102
103 # Definition of the receiver’s entity.

104 − en t i t y :
105 name : "square_receiver"

106 primary : 0
107 # set "primary" to 0 because this entity should not the sampled as a primary reflector

108 trans form : { r o t a t i on : [0 , 0 , 0] , t r a n s l a t i o n : [0 , 0 , −10] }
109 # The "small_square" geometry is created as horizontal. In order to

110 # have it vertical, a rotation of 90 degrees around the Y-axis must be performed.

111 # Also, a translation is applied in order to position it in space.

112 anchors :
113 − name : "anchor0"

114 po s i t i o n : [0 , 0 , 0]
115 # An anchor is defined, at a local position (in the referential of the square)

116 geometry : ∗ sma l l squa r e
117
118 # Definition of a glass box

119 − en t i t y :
120 name : "glass_slide"

121 primary : 0
122 trans form : { r o t a t i on : [0 , 0 , 0] , t r a n s l a t i o n : [0 , 0 , 0] }
123 geometry : ∗ g l a s s box
124
125 # Definition of the primary reflectors

126 − en t i t y :
127 name : "primary_reflector1"

25

128 primary : 1 # primary=1 -> sampled for integration

129 trans form : { r o t a t i on : [0 , 0 , 0] , t r a n s l a t i o n : [0 , 0 , −2.0] }
130 geometry :
131 − mate r i a l : ∗ sp e cu l a r
132 parabol :
133 f o c a l : 12
134 c l i p :
135 − opera t ion : AND
136 c i r c l e :
137 rad iu s : 10
138 cente r : [0 , 0]
139 − opera t ion : SUB
140 c i r c l e :
141 rad iu s : 5
142 cente r : [0 , 0]
143
144 − en t i t y :
145 name : "primary_reflector2"

146 primary : 1 # primary=1 -> sampled for integration

147 trans form : { r o t a t i on : [0 , 0 , 0] , t r a n s l a t i o n : [0 , 0 , −4] }
148 geometry :
149 − mate r i a l : ∗ sp e cu l a r
150 parabol :
151 f o c a l : 14
152 c l i p :
153 − opera t ion : AND
154 c i r c l e :
155 rad iu s : 15
156 cente r : [0 , 0]
157 − opera t ion : SUB
158 c i r c l e :
159 rad iu s : 10
160 cente r : [0 , 0]
161
162
163 − en t i t y :
164 name : "primary_reflector3"

165 primary : 1 # primary=1 -> sampled for integration

166 trans form : { r o t a t i on : [0 , 0 , 0] , t r a n s l a t i o n : [0 , 0 , −6] }
167 geometry :
168 − mate r i a l : ∗ sp e cu l a r
169 parabol :
170 f o c a l : 16
171 c l i p :
172 − opera t ion : AND
173 c i r c l e :
174 rad iu s : 20
175 cente r : [0 , 0]
176 − opera t ion : SUB
177 c i r c l e :
178 rad iu s : 15
179 cente r : [0 , 0]
180
181

26

182 # Definition of the secondary reflector

183 − en t i t y :
184 name : "secondary_reflector"

185 primary : 0 # primary=0 -> NOT sampled for integration

186 trans form : { r o t a t i on : [0 , 0 , 0] , t r a n s l a t i o n : [0 , 0 , 6] }
187 geometry :
188 − mate r i a l : ∗ sp e cu l a r
189 hyperbol :
190 f o c a l s : &hyp e r b o l f o c a l s { r e a l : 16 . 0 , image : 4 }
191 c l i p :
192 − opera t ion : AND
193 c i r c l e :
194 rad iu s : 5
195 cente r : [0 , 0]
196
197 # Atmospheric absorption properties

198 − atmosphere :
199 e x t i n c t i o n : ∗ a i r k ab s

The following ”horizontal receiver.yaml” file is used to define the receiver:

1 − { name : "square_receiver" , s i d e : FRONT }

The ”horizontal receiver.yaml” file illustrates the use of the following new concepts:

• Spectra: at the beginning of the file, 4 different spectra are defined in order to describe the
spectral dependence of: the incoming sunlight (”solar spectrum”), the absorption coefficient of the
atmosphere (”air kabs”), the absorption coefficient of the glass (”glass kabs”), and the refraction
index of the glass (”glass ref index”). These spectra have been defined from 0.3 to 0.8 micrometers
with a step of 0.1 micrometer, but any spectral discretisation can be used, with no limit on the
number of wavelengths.

• Two media have been defined: air (”air medium”) and glass (”glass medium”). Each medium
needs the definition of its refraction index and its absorption coefficient. These properties can be
a constant, such as in the case of the refraction index of air, or a spectrum.

• Two new categories of material properties are introduced: ”thin dielectric” and ”dielectric” that
are used respectively in the ”thin glass” and ”glass” materials. In each case, the ”medium i” and
”medium t” properties need to be set using the previously defined ”air medium” and ”glass medium”
media: ”medium i” refers to the medium on the exterior of the material, while ”medium t” refers
to the medium on the interior of the material. Since ”thin dielectric” is a surface property, we
do not need to distinguish between the front and back side properties, but we need to define the
thickness of the material. However, ”dielectric” is a volume property. But since we will use it
over a geometry that is defined by its surface (see the ”glass box” geometry), we need to provide
some information about what ”medium i” and ”medium t” refers to, for each side of this surface.

• The ”cuboid” shape is used in order to define the ”glass box” geometric template. It is later used
to define the ”glass slide” geometric entity.

• The ”circle” shape is used in order to perform clipping operations over the three paraboloids and
the hyperboloid.

27

./source_files/horizontal_receiver.yaml

Figure 7: 3D visualisation of 100 ray paths in the example of a complex optical path space, in the case
the box uses the ”thin dielectric” material.

28

Figure 8: Identical to figure 7, but in the case the box uses the ”dielectric” material.

29

• Finally, the absorption optical properties of the atmosphere are set, using the ”air kabs” spectrum
that was defined at the beginning of the file.

Note that the ”glass box” template was defined using the ”thin glass” material (line 97). When
running the solstice computation:

1 s o l s t i c e −v −D 0 ,90 −R ho r i z o n t a l r e c e i v e r . yaml mu l t i p l e r e f l e c t o r s . yaml

The output is the following:

1 #−−− Sun d i r e c t i o n : 0 90 (−6.12323e−17 −0 −1)
2 7 1 3 10000 0
3 1304.77 0
4 560.165 5.85968
5 0.901466 0
6 21.7609 1.58503
7 592.655 5.87936
8 0.0116907 0.000180356
9 1.62976 0.020356

10 s qu a r e r e c e i v e r 10 1 560.165 5 .85968 560.175 5.85979 561.596 5 .87464 0.0101335
0.000161338 1.43105 0.0204374 560.165 5.85968 560.175 5.85979 561.596
5.87464 0.0101335 0.000161338 1.43105 0.0204374 0.429321 0.00449097 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
11 p r ima r y r e f l e c t o r 2 2 430.566 3342 0.901466 0 0.353225 0.203904
12 p r ima r y r e f l e c t o r 3 18 626.685 4723 0.901466 0 0 0
13 p r ima r y r e f l e c t o r 1 22 247.518 1935 0.901466 0 21.4077 1.57234
14 10 2 247.869 4.78884 247.874 4.78892 248.514 4.80129 0.00427742 0.000109438

0.645159 0.0155446 247.869 4.78884 247.874 4.78892 248.514 4.80129
0.00427742 0.000109438 0.645159 0.0155446 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
15 10 18 126.176 3.63372 126.178 3.63379 126.545 3.64434 0.00218434 8.10263 e−05

0.36895 0.0129045 126.176 3.63372 126.178 3 .63379 126.545 3.64434
0.00218434 8.10263 e−05 0.36895 0.0129045 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
16 10 22 186 .12 4 .28689 186.123 4.28698 186.537 4.29649 0.00367178 0.000118752

0.41694 0.0119037 186 .12 4 .28689 186.123 4 .28698 186.537 4.29649 0.00367178
0.000118752 0.41694 0.0119037 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1

We can see that from the 1304.77 watts that could potentially reach primary reflectors, only
1304.77*0.901466=1176.21 watts are really intercepted by primary reflectors, and 560.165±5.8 watts
are finally absorbed by the receiver: 21.76±1.58 watts are lost because of shadowing, 592.65±5.9 watts
are lost because their optical paths do not end on the receiver, 1.17e-2±1.80e-4 watts are absorbed dur-
ing surface reflections and by semi-transparent solids (the glass), and 1.63±2.0e-2 watts are lost because
of atmospheric absorption. Figure 7 shows a representation of 100 optical paths in the geometry.

We can try to change the material of the glass box: let us comment line 97 and uncomment line
98, thus defining the ”glass box” made of the ”glass” material (that uses the ”dielectric” material
property). The output of the computation is the following:

1 #−−− Sun d i r e c t i o n : 0 90 (−6.12323e−17 −0 −1)
2 7 1 3 10000 0
3 1304.77 0
4 567.935 5.83848

30

5 0.901466 0
6 23.0542 1.63051
7 579 .89 5 .86835
8 3.76984 0.146377
9 1.57257 0.0196893

10 s qu a r e r e c e i v e r 10 1 567.935 5 .83848 570 .42 5 .8639 569.352 5 .85297 2.48545
0.038546 1.41737 0.0199482 567.935 5.83848 570 .42 5 .8639 569.352 5.85297
2.48545 0.038546 1.41737 0.0199482 0.435276 0.00447472 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
11 p r ima r y r e f l e c t o r 2 2 430.566 3333 0.901466 0 0.353225 0.203904
12 p r ima r y r e f l e c t o r 3 18 626.685 4729 0.901466 0 0 0
13 p r ima r y r e f l e c t o r 1 22 247.518 1938 0.901466 0 22 .701 1.61821
14 10 2 255.351 4.82788 256.456 4 .8487 256.001 4.84014 1 .105 0.0279758 0.650461

0.0153273 255.351 4.82788 256.456 4 .8487 256.001 4.84014 1 .105 0.0279758
0.650461 0.0153273 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1
15 10 18 133.838 3.72019 134.401 3.73578 134.215 3.73061 0.56263 0.0204059

0.376226 0.0128164 133.838 3.72019 134.401 3.73578 134.215 3.73061 0.56263
0.0204059 0.376226 0.0128164 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1

16 10 22 178.745 4 .2057 179.563 4.22488 179.136 4.21486 0.817818 0.0261506
0.390682 0.0113097 178.745 4 .2057 179.563 4.22488 179.136 4.21486 0.817818
0.0261506 0.390682 0.0113097 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1

The modification in the nature of the glass material has the following consequences: it slightly
increases the losses due to shadowing of primary reflectors, decreases the power that is not focused
on the receiver; atmospheric absorption is not significantly modified, but losses due to absorption by
materials (in this case, the glass) has been increased by factor 300 !

In these last two results sets, energy budgets can be verified: the sum of losses, plus the absorbed
flux, is equal to the potential flux multiplied by the global cos-factor; the sum of per-primary shadow
losses is equal to the global shadow losses; the sum of per receiver and per primary materials losses is
equal to the global materials losses; the same is true for atmospheric absorption losses. Finally, the
sum of per-primary cos-factors, pondered by the surface of each primary reflector, is equal to the global
cos-factor.

5 Post-processing tools

Post-processing tools can be downloaded from the Méso-Star website (within the Solstice/Additional
Resources section). Follow the instructions in order to compile these tools. Four different programs
can be used:

5.1 solppraw

This program reformats the Solstice output into a much more human-friendly format. In can both be
used over a ascii Solstice output file, or directly piped over the Solstice command. For instance, let
it work over the console output of the last command used in the previous section:

1 s o l s t i c e −v −D 0 ,90 −R ho r i z o n t a l r e c e i v e r . yaml mu l t i p l e r e f l e c t o r s . yaml | solppraw

31

This command should produce the ”0-90-raw-results.txt” file provided below:

1 Overa l l r e s u l t s (#Samples = 10000)
2 −−
3 Pot en t i a l f l u x | 1304.77 +/− 0
4 Absorbed f l u x | 560.165 +/− 5.85968
5 Cosine f a c t o r | 0.901466 +/− 0
6 Shadow l o s s | 21.7609 +/− 1.58503
7 Miss ing l o s s | 592.655 +/− 5.87936
8 Mate r i a l s l o s s | 0.0116907 +/− 0.000180356
9 Atmospheric l o s s | 1.62976 +/− 0.020356

10
11 Rece iver ‘ square r e c e i v e r ’ (Area = 1)
12 −−−[Front]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
13 | [Incoming] [Absorbed]
14 Flux | 560.165 +/− 5.85968 | 560.165 +/− 5.85968
15 Mater ia l l o s s | 0.0101335 +/− 0.000161338 | 0.0101335 +/− 0.000161338
16 Atmospheric l o s s | 1.43105 +/− 0.0204374 | 1.43105 +/− 0.0204374
17 No Mater ia l l o s s | 560.175 +/− 5.85979 | 560.175 +/− 5.85979
18 No Atmos . l o s s | 561.596 +/− 5.87464 | 561.596 +/− 5.87464
19 |
20 E f f i c i e n c y | 0.429321 +/− 0.00449097
21
22 Primary ‘ primary r e f l e c t o r 2 ’ (Area = 430 . 566 ; #Samples = 3342)
23 −−
24 Cosine f a c t o r | 0.901466 +/− 0
25 Shadow l o s s | 0.353225 +/− 0.203904
26
27 Primary ‘ primary r e f l e c t o r 3 ’ (Area = 626 . 685 ; #Samples = 4723)
28 −−
29 Cosine f a c t o r | 0.901466 +/− 0
30 Shadow l o s s | 0 +/− 0
31
32 Primary ‘ primary r e f l e c t o r 1 ’ (Area = 247 . 518 ; #Samples = 1935)
33 −−
34 Cosine f a c t o r | 0.901466 +/− 0
35 Shadow l o s s | 21.4077 +/− 1.57234
36
37 Rece iver ‘ square r e c e i v e r ’ X Primary ‘ primary r e f l e c t o r 2 ’
38 −−−[Front]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
39 | [Incoming] [Absorbed]
40 Flux | 247.869 +/− 4.78884 | 247.869 +/− 4.78884
41 Mater ia l l o s s | 0.00427742 +/− 0.000109438 | 0.00427742 +/− 0.000109438
42 Atmospheric l o s s | 0.645159 +/− 0.0155446 | 0.645159 +/− 0.0155446
43 No Mater ia l l o s s | 247.874 +/− 4.78892 | 247.874 +/− 4.78892
44 No Atmos . l o s s | 248.514 +/− 4.80129 | 248.514 +/− 4.80129
45
46 Rece iver ‘ square r e c e i v e r ’ X Primary ‘ primary r e f l e c t o r 3 ’
47 −−−[Front]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48 | [Incoming] [Absorbed]
49 Flux | 126.176 +/− 3.63372 | 126.176 +/− 3.63372
50 Mater ia l l o s s | 0.00218434 +/− 8.10263 e−05 | 0.00218434 +/− 8.10263 e−05
51 Atmospheric l o s s | 0.36895 +/− 0.0129045 | 0.36895 +/− 0.0129045
52 No Mater ia l l o s s | 126.178 +/− 3.63379 | 126.178 +/− 3.63379
53 No Atmos . l o s s | 126.545 +/− 3.64434 | 126.545 +/− 3.64434
54
55 Rece iver ‘ square r e c e i v e r ’ X Primary ‘ primary r e f l e c t o r 1 ’
56 −−−[Front]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
57 | [Incoming] [Absorbed]
58 Flux | 186 .12 +/− 4.28689 | 186 .12 +/− 4.28689
59 Mater ia l l o s s | 0.00367178 +/− 0.000118752 | 0.00367178 +/− 0.000118752
60 Atmospheric l o s s | 0.41694 +/− 0.0119037 | 0.41694 +/− 0.0119037
61 No Mater ia l l o s s | 186.123 +/− 4.28698 | 186.123 +/− 4.28698
62 No Atmos . l o s s | 186.537 +/− 4.29649 | 186.537 +/− 4.29649

32

5.2 solmaps

The solmaps command is used in order to produce a vtk file containing the required data for drawing
a map or the incoming solar flux over all receivers that have been defined using the ”per primitive”
flag.

For instance, let us use the last example of the last section. We first have to use the ”per primitive”
flag over the ”square receiver” defined in the ”horizontal receiver.yaml” file:

1 − name : "square_receiver"

2 s i d e : FRONT
3 pe r p r im i t i v e : INCOMING

We also need to modify the definition of the ”square receiver”: if we want to draw a map of the
incoming solar flux density, the receiver must be defined using more than the default 2 triangles (since
the receiver is a square). In order to do that, we can use the ”slices” parameter in the definition of the
”small square” geometry that is later used in the definition of the ”square receiver” entity; let us use
for instance a value of 64 instead of the default (value of 1):

1 − geometry : &sma l l squa r e
2 − mate r i a l : ∗black
3 plane :
4 s l i c e s : 64
5 c l i p :
6 − opera t ion : AND
7 v e r t i c e s :
8 − [−0.50 , −0.50]
9 − [−0.50 , 0 . 5 0]

10 − [0 . 5 0 , 0 . 5 0]
11 − [0 . 5 0 , −0.50]

Then run solstice using a high number of samples, and pipe the command through the solmaps
program:

1 s o l s t i c e −n 1000000 −v −D 0 ,90 −R ho r i z o n t a l r e c e i v e r v a r i a t i o n 1 . yaml
mu l t i p l e r e f l e c t o r s v a r i a t i o n 2 . yaml | solmaps

This produces the ”0-90-square receiver.vtk” file, that can finally be visualised using ”paraview” in
order to produce a map such as the one shown in figure 9

5.3 solpaths

The solpaths program uses the solstice output when it is invoked with the ”-p” option (used for
generating typical optical paths), in order to produce, for each input solar direction, a vtk file that can
be opened in order to visualise the typical optical paths.

5.4 solpp

The solpp program will generate three files for each required input solar direction:

• A first vtk file where several results are mapped over primary geometries (reflectors).

• A second vtk file where various results are mapped over receivers.

33

Figure 9: Map of the incoming solar flux density over the square receiver used in the last example of
section 4

34

• A obj files used for the representation of geometries that are neither primary geometries, nor
reflectors.

This program uses two input files:

• A legacy simulation ouput file. For instance, over the last example of section 4:

1 s o l s t i c e −n 1000000 −D 0 ,90 −R ho r i z o n t a l r e c e i v e r . yaml −o s imul . txt
mu l t i p l e r e f l e c t o r s . yaml

• The geometry of a solar plant, produced by solstice when invoked with the ”-g” options. For
instance, over the last example of section 4:

1 s o l s t i c e −D 0 ,90 −R ho r i z o n t a l r e c e i v e r . yaml −g format=obj−o geometry . obj
mu l t i p l e r e f l e c t o r s . yaml

Then running the solpp command over the two files that result from previous commands:

1 so lpp geometry . obj s imul . txt

produces three files: ”0-90-primaries.vtk”, ”0-90-receivers.vtk” and ”0-90-miscellaneous.obj”. Fig-
ure 10 shows the solar input flux over primary geometries, produces using the ”0-90-primaries.vtk” file.
Figure 9 is a good example of what can be produced from the ”0-90-receivers.vtk” file. Figure 11 shows
the geometry stored in the ”0-90-miscellaneous.obj” file.

35

Figure 10: Map of the incoming solar flux density over the primary geometries used in the last example
of section 4

36

Figure 11: Geometries that are neither primary geometries, nor receivers, produced from the ”0-90-
miscellaneous.obj” file.

References

[1] D. Buie, A.G. Monger, and C.J. Dey. Sunshape distributions for terrestrial solar simulations. Solar
Energy, 74:113–122, 2003.

37

	Introduction
	First steps: performing a very simple computation
	Tweaking the first example
	Solar disk models
	Surface properties of materials
	Rotating and translating geometric elements
	Geometric shapes
	Pivots

	A more complex example
	Post-processing tools
	solppraw
	solmaps
	solpaths
	solpp

